
Distributed Cache Service

Best Practices

Issue 01

Date 2025-01-07

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 DCS Best Practices... 1

2 Service Application..4
2.1 Serializing Access to Frequently Accessed Resources... 4
2.2 Ranking with DCS... 9
2.3 Implementing Bullet-Screen and Social Comments with DCS.. 12
2.4 Merging Game Servers with DCS.. 17
2.5 Flashing E-commerce Sales with DCS... 20
2.6 Reconstructing Application System Databases with DCS... 23
2.7 Upgrading a Redis 3.0 Instance... 26

3 Network Connection.. 31
3.1 Using Nginx for Public Access to DCS... 31
3.2 Using SSH Tunneling for Public Access to DCS.. 36
3.3 Using ELB for Public Access to DCS.. 40
3.4 Connecting a Client to DCS Through CCE.. 44
3.5 Configuring Redis Client Retry... 49

4 Usage Guide..56
4.1 DCS Data Security...56
4.2 Suggestions on Using DCS...60
4.3 Detecting and Handling Big Keys and Hot Keys..69
4.4 Configuring a Redis Pipeline... 74
4.5 Optimizing the Jedis Connection Pool... 78

Distributed Cache Service
Best Practices Contents

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 DCS Best Practices

This section summarizes best practices of Distributed Cache Service (DCS) in
common scenarios. Each practice is given a description and procedure.

Table 1-1 DCS best practices

Best Practice Description

Serializing Access to
Frequently Accessed
Resources

Describes how to implement locks on
distributed applications with Redis. Serializing
access to hot resources with locks avoids
oversold inventory or disordered access in flash
sales.

Ranking with DCS Describes how to rank best-selling offerings
using DCS for Redis.

Implementing Bullet-Screen
and Social Comments with
DCS

Describes how to display a key-value list, such
as streaming or social comments, in
descending order from different dimensions
using DCS for Redis.

Merging Game Servers with
DCS

Describes how to synchronize servers using
Redis. During game server provisioning and
merging, game developers must consider how
to synchronize data among different servers.
With the pub/sub message queuing
mechanism of DCS for Redis, data changes on
one game server can be published to Redis
channels. Other game servers can subscribe to
the channels to receive messages of changes.

Flashing E-commerce Sales
with DCS

Describes how to satisfy high concurrency in e-
commerce flash sales using DCS for Redis as
the database cache. Clients can access Redis to
query inventories and place orders.

Reconstructing Application
System Databases with DCS

Describes how to migrate data, taking the
example of migrating a table from a MySQL
database to DCS for Redis.

Distributed Cache Service
Best Practices 1 DCS Best Practices

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Best Practice Description

Upgrading a Redis 3.0
Instance

Describes how to upgrade a DCS Redis 3.0
instance through data migration and IP
switchover. You are advised to upgrade your
DCS Redis 3.0 instances as soon as possible.
DCS for Redis 4.0 and later are compatible with
Redis 3.0.

Using Nginx for Public
Access to DCS

Huawei Cloud DCS Redis 4.0 and later cannot
be bound with elastic IP addresses (EIPs) and
cannot be accessed over public networks
directly. This best practice describes how to
access a single-node, master/standby, read/
write splitting, or Proxy Cluster DCS Redis 4.0,
5.0, or 6.0 instance by using a jump server. This
solution is unavailable for public access to
Redis Cluster instances.

Using SSH Tunneling for
Public Access to DCS

Huawei Cloud DCS Redis 4.0 and later cannot
be bound with EIPs and cannot be accessed
over public networks directly. This best practice
describes how to create an SSH tunnel as a
proxy to connect your DCS instance and local
computer to achieve proxy forwarding. In this
way, single-node, master/standby, read/write
splitting, and Proxy Cluster DCS Redis instances
in a VPC can be accessed. This solution is
unavailable for public access to Redis Cluster
instances.

Using ELB for Public Access
to DCS

Huawei Cloud DCS Redis 4.0 and later cannot
be bound with EIPs and cannot be accessed
over public networks directly. This best practice
describes how to access a single-node, master/
standby, read/write splitting, or Proxy Cluster
instance or a node in a Redis Cluster instance
through public networks by enabling cross-VPC
backend on a load balancer.

Connecting a Client to DCS
Through CCE

More and more applications are deployed in
containers. This practice describes how to
deploy Redis clients in cluster containers to
access DCS through Cloud Container Engine
(CCE).

Configuring Redis Client
Retry

This best practice describes the retry
configuration of the Jedis client. A complete
automatic retry mechanism can greatly reduce
the impact of infrastructure or running
environment faults.

DCS Data Security This best practice provides actionable guidance
for enhancing the overall security of using DCS.

Distributed Cache Service
Best Practices 1 DCS Best Practices

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Best Practice Description

Suggestions on Using DCS This best practice describes suggestions on
using DCS for Redis in terms of the service,
data design, commands, SDKs, and O&M
management.

Detecting and Handling Big
Keys and Hot Keys

This best practice describes how to find and
optimize big keys and hot keys when using
DCS for Redis.

Configuring a Redis Pipeline This best practice describes how to use Redis
pipelines. DCS for Redis supports the native
pipelining.

Optimizing the Jedis
Connection Pool

JedisPool is the connection pool of the Jedis
client. This best practice describes how to
configure JedisPool for better Redis
performance and resource utilization.

Distributed Cache Service
Best Practices 1 DCS Best Practices

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

2 Service Application

2.1 Serializing Access to Frequently Accessed Resources

Overview
Application Scenario

In monolithic deployment, you can use Java concurrency APIs such as
ReentrantLock or synchronized to implement mutual exclusion locks. This native
lock mechanism provided by Java ensures that multiple threads within a Java VM
process are executed concurrently and sequentially.

However, this mechanism may fail in multi-node deployment because a node's
lock only takes effect on threads in the Java VM where the node runs. For
example, the concurrency level in Internet seckills requires multiple nodes to run
at the same time. Assume that requests of two users arrive simultaneously on two
nodes. Although the requests can be processed simultaneously on the respective
nodes, an inventory oversold problem may still occur because the nodes use
different locks.

Solution

To serialize access to resources, ensure that all nodes use the same lock. This
requires a distributed lock.

The idea of a distributed lock is to provide a globally unique "thing" for different
systems to allocate locks. When a system needs a lock, it asks the "thing" for a
lock. In this way, different systems can obtain the same lock.

Currently, a distributed lock can be implemented using cache databases, disk
databases, or ZooKeeper.

Implementing distributed locks using DCS Redis instances has the following
advantages:

● Simple operation: Locks can be acquired and released by using simple
commands such as SET, GET, and DEL.

● High performance: Cache databases deliver higher read/write performance
than disk databases and ZooKeeper.

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

● High reliability: DCS supports both master/standby and cluster instances,
preventing single points of failure.

Implementing locks on distributed applications can avoid inventory oversold
problems and nonsequential access. The following describes how to implement
locks on distributed applications with Redis.

Prerequisites
● A DCS instance has been created, and is in the Running state.
● The network between the client server and the DCS instance is connected:

– When the client and the DCS Redis instance are in the same VPC:
By default, networks in a VPC can communicate with each other.

– When the client and the DCS Redis instance are in different VPCs in the
same region:
If the client and DCS Redis instance are not in the same VPC, connect
them by establishing a VPC peering connection. For details, see Does DCS
Support Cross-VPC Access?

– To access a Redis instance of another region on a client
If the client server and the Redis instance are not in the same region,
connect the network using Direct Connect. For details, see What Is Direct
Connect.

– For public access
For details about how to access a DCS Redis 4.0/5.0/6.0 instance on a
client over a public network, see Using Nginx for Public Access to DCS
or Using ELB for Public Access to DCS.

● You have installed JDK1.8 (or later) and a development tool (Eclipse is used
as an example) on the client server, and downloaded the Jedis client.
The development tools and clients mentioned in this document are for
example only.

Procedure

Step 1 Run Eclipse on the server and create a Java project. Then, create a distributed lock
implementation class DistributedLock.java and a test class CaseTest.java for the
example code, and reference the Jedis client as a library to the project.

Sample code of DistributedLock.java:

package dcsDemo01;

import java.util.UUID;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.params.SetParams;

public class DistributedLock {
 // Address and port for connecting to the Redis instance. Replace them with the actual values.
 private final String host = "192.168.0.220";
 private final int port = 6379;

 private static final String SUCCESS = "OK";

 public DistributedLock(){}

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427002.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427002.html
https://support.huaweicloud.com/intl/en-us/productdesc-dc/en-us_topic_0032053183.html
https://support.huaweicloud.com/intl/en-us/productdesc-dc/en-us_topic_0032053183.html
https://www.oracle.com/java/technologies/downloads/
https://www.eclipse.org/downloads/
https://jar-download.com/artifacts/redis.clients/jedis/3.5.1/source-code

 /*
 * @param lockName Lock name
 * @param timeout Timeout for acquiring locks
 * @param lockTimeout Validity period of locks
 * @return Lock ID
 */
 public String getLockWithTimeout(String lockName, long timeout, long lockTimeout) {
 String ret = null;
 Jedis jedisClient = new Jedis(host, port);

 try {
 // Password for connecting to the Redis instance. Replace it with the actual value.
 String authMsg = jedisClient.auth("passwd");
 if (!SUCCESS.equals(authMsg)) {
 System.out.println("AUTH FAILED: " + authMsg);
 }

 String identifier = UUID.randomUUID().toString();
 String lockKey = "DLock:" + lockName;
 long end = System.currentTimeMillis() + timeout;

 SetParams setParams = new SetParams();
 setParams.nx().px(lockTimeout);

 while(System.currentTimeMillis() < end) {
 String result = jedisClient.set(lockKey, identifier, setParams);
 if(SUCCESS.equals(result)) {
 ret = identifier;
 break;
 }

 try {
 Thread.sleep(2);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }finally {
 jedisClient.quit();
 jedisClient.close();
 }

 return ret;
 }

 /*
 * @param lockName Lock name
 * @param identifier Lock ID
 */
 public void releaseLock(String lockName, String identifier) {
 Jedis jedisClient = new Jedis(host, port);

 try {
 String authMsg = jedisClient.auth("passwd");
 if (!SUCCESS.equals(authMsg)) {
 System.out.println("AUTH FAILED: " + authMsg);
 }

 String lockKey = "DLock:" + lockName;
 if(identifier.equals(jedisClient.get(lockKey))) {
 jedisClient.del(lockKey);
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }finally {

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

 jedisClient.quit();
 jedisClient.close();
 }
 }
}

NO TICE

The code only shows how DCS implements access control using locks. During
actual implementation, deadlock and lock check also need to be considered.

Assume that 20 threads are used to seckill ten Mate 10 mobile phones. The
content of the test class CaseTest.java is as follows:
package dcsDemo01;
import java.util.UUID;

public class CaseTest {
 public static void main(String[] args) {
 ServiceOrder service = new ServiceOrder();
 for (int i = 0; i < 20; i++) {
 ThreadBuy client = new ThreadBuy(service);
 client.start();
 }
 }
}

class ServiceOrder {
 private final int MAX = 10;

 DistributedLock DLock = new DistributedLock();

 int n = 10;

 public void handleOder() {
 String userName = UUID.randomUUID().toString().substring(0,8) + Thread.currentThread().getName();
 String identifier = DLock.getLockWithTimeout("Mate 10", 10000, 2000);
 System.out.println("Processing order for user " + userName + "");
 if(n > 0) {
 int num = MAX - n + 1;
 System.out.println("User "+ userName + " is allocated number " + num + " mobile phone. Number
of mobile phones left: " + (--n) + "");
 }else {
 System.out.println("User "+ userName + " order failed.");
 }
 DLock.releaseLock("Mate 10", identifier);
 }
}

class ThreadBuy extends Thread {
 private ServiceOrder service;

 public ThreadBuy(ServiceOrder service) {
 this.service = service;
 }

 @Override
 public void run() {
 service.handleOder();
 }
}

Step 2 Configure the connection address, port number, and password of the DCS instance
in the example code file DistributedLock.java.

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

In DistributedLock.java, set host and port to the connection address and port
number of the instance. In the getLockWithTimeout and releaseLock methods,
set passwd to the instance access password.

Step 3 Comment out the lock part in the test class CaseTest. The following is an
example:
//The lock code is commented out in the test class:
public void handleOder() {
 String userName = UUID.randomUUID().toString().substring(0,8) + Thread.currentThread().getName();
 //Lock code
 //String identifier = DLock.getLockWithTimeout("Mate 10", 10000, 2000);
 System.out.println("Processing order for user " + userName + "");
 if(n > 0) {
 int num = MAX - n + 1;
 System.out.println("User "+ userName + " is allocated number " + num + " mobile phone. Number
of mobile phones left: " + (--n) + "");
 }else {
 System.out.println("User "+ userName + " order failed.");
 }
 //Lock code
 //DLock.releaseLock("Mate 10", identifier);
}

Step 4 Compile and run a lock-free class. The purchases are disordered, as shown in the
following:
Processing order for user e04934ddThread-5
Processing order for user a4554180Thread-0
User a4554180Thread-0 is allocated number 2 mobile phone. Number of mobile phones left: 8.
Processing order for user b58eb811Thread-10
User b58eb811Thread-10 is allocated number 3 mobile phone. Number of mobile phones left: 7.
Processing order for user e8391c0eThread-19
Processing order for user 21fd133aThread-13
Processing order for user 1dd04ff4Thread-6
User 1dd04ff4Thread-6 is allocated number 6 mobile phone. Number of mobile phones left: 4.
Processing order for user e5977112Thread-3
Processing order for user 4d7a8a2bThread-4
User e5977112Thread-3 is allocated number 7 mobile phone. Number of mobile phones left: 3.
Processing order for user 18967410Thread-15
User 18967410Thread-15 is allocated number 9 mobile phone. Number of mobile phones left: 1.
Processing order for user e4f51568Thread-14
User 21fd133aThread-13 is allocated number 5 mobile phone. Number of mobile phones left: 5.
User e8391c0eThread-19 is allocated number 4 mobile phone. Number of mobile phones left: 6.
Processing order for user d895d3f1Thread-12
User d895d3f1Thread-12 order failed.
Processing order for user 7b8d2526Thread-11
User 7b8d2526Thread-11 order failed.
Processing order for user d7ca1779Thread-8
User d7ca1779Thread-8 order failed.
Processing order for user 74fca0ecThread-1
User 74fca0ecThread-1 order failed.
User e04934ddThread-5 is allocated number 1 mobile phone. Number of mobile phones left: 9.
User e4f51568Thread-14 is allocated number 10 mobile phone. Number of mobile phones left: 0.
Processing order for user aae76a83Thread-7
User aae76a83Thread-7 order failed.
Processing order for user c638d2cfThread-2
User c638d2cfThread-2 order failed.
Processing order for user 2de29a4eThread-17
User 2de29a4eThread-17 order failed.
Processing order for user 40a46ba0Thread-18
User 40a46ba0Thread-18 order failed.
Processing order for user 211fd9c7Thread-9
User 211fd9c7Thread-9 order failed.
Processing order for user 911b83fcThread-16
User 911b83fcThread-16 order failed.
User 4d7a8a2bThread-4 is allocated number 8 mobile phone. Number of mobile phones left: 2.

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Step 5 Add the lock code back to CaseTest, and compile and run the code. The following
shows sequential purchases:
Processing order for user eee56fb7Thread-16
User eee56fb7Thread-16 is allocated number 1 mobile phone. Number of mobile phones left: 9.
Processing order for user d6521816Thread-2
User d6521816Thread-2 is allocated number 2 mobile phone. Number of mobile phones left: 8.
Processing order for user d7b3b983Thread-19
User d7b3b983Thread-19 is allocated number 3 mobile phone. Number of mobile phones left: 7.
Processing order for user 36a6b97aThread-15
User 36a6b97aThread-15 is allocated number 4 mobile phone. Number of mobile phones left: 6.
Processing order for user 9a973456Thread-1
User 9a973456Thread-1 is allocated number 5 mobile phone. Number of mobile phones left: 5.
Processing order for user 03f1de9aThread-14
User 03f1de9aThread-14 is allocated number 6 mobile phone. Number of mobile phones left: 4.
Processing order for user 2c315ee6Thread-11
User 2c315ee6Thread-11 is allocated number 7 mobile phone. Number of mobile phones left: 3.
Processing order for user 2b03b7c0Thread-12
User 2b03b7c0Thread-12 is allocated number 8 mobile phone. Number of mobile phones left: 2.
Processing order for user 75f25749Thread-0
User 75f25749Thread-0 is allocated number 9 mobile phone. Number of mobile phones left: 1.
Processing order for user 26c71db5Thread-18
User 26c71db5Thread-18 is allocated number 10 mobile phone. Number of mobile phones left: 0.
Processing order for user c32654dbThread-17
User c32654dbThread-17 order failed.
Processing order for user df94370aThread-7
User df94370aThread-7 order failed.
Processing order for user 0af94cddThread-5
User 0af94cddThread-5 order failed.
Processing order for user e52428a4Thread-13
User e52428a4Thread-13 order failed.
Processing order for user 46f91208Thread-10
User 46f91208Thread-10 order failed.
Processing order for user e0ca87bbThread-9
User e0ca87bbThread-9 order failed.
Processing order for user f385af9aThread-8
User f385af9aThread-8 order failed.
Processing order for user 46c5f498Thread-6
User 46c5f498Thread-6 order failed.
Processing order for user 935e0f50Thread-3
User 935e0f50Thread-3 order failed.
Processing order for user d3eaae29Thread-4
User d3eaae29Thread-4 order failed.

----End

2.2 Ranking with DCS

Overview
Ranking is a function commonly used on web pages and apps. It is implemented
by listing key-values in descending order. However, a huge number of concurrent
operation and query requests can result in a performance bottleneck, significantly
increasing latency.

Ranking using DCS for Redis provides the following advantages:

● Data is stored in the memory, so read/write is fast.
● Multiple types of data structures, such as strings, lists, sets, and hashes are

supported.

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Prerequisites
● A DCS instance has been created, and is in the Running state.
● The network between the client server and the DCS instance is connected:

– When the client and the DCS Redis instance are in the same VPC:
By default, networks in a VPC can communicate with each other.

– When the client and the DCS Redis instance are in different VPCs in the
same region:
If the client and DCS Redis instance are not in the same VPC, connect
them by establishing a VPC peering connection. For details, see Does DCS
Support Cross-VPC Access?

– To access a Redis instance of another region on a client
If the client server and the Redis instance are not in the same region,
connect the network using Direct Connect. For details, see What Is Direct
Connect.

– For public access
For details about how to access a DCS Redis 4.0/5.0/6.0 instance on a
client over a public network, see Using Nginx for Public Access to DCS
or Using ELB for Public Access to DCS.

● You have installed JDK1.8 (or later) and a development tool (Eclipse is used
as an example) on the client server, and downloaded the Jedis client.
The development tools and clients mentioned in this document are for
example only.

Procedure

Step 1 Run Eclipse on the server. Choose File > New Project to create a Java project
named dcsDemo02.

Step 2 Choose New > Class to create a productSalesRankDemo.java file.

Step 3 Copy the following demo code to the productSalesRankDemo.java file.
package dcsDemo02;

import java.util.ArrayList;
import java.util.List;
import java.util.Set;
import java.util.UUID;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.Tuple;

public class productSalesRankDemo {
 static final int PRODUCT_KINDS = 30;

 public static void main(String[] args) {
 // Address and port for connecting to the Redis instance. Replace them with the actual values.
 String host = "192.168.0.246";
 int port = 6379;

 Jedis jedisClient = new Jedis(host, port);

 try {
 // Password for connecting to the Redis instance. Replace it with the actual value.
 String authMsg = jedisClient.auth("******");
 if (!authMsg.equals("OK")) {

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427002.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427002.html
https://support.huaweicloud.com/intl/en-us/productdesc-dc/en-us_topic_0032053183.html
https://support.huaweicloud.com/intl/en-us/productdesc-dc/en-us_topic_0032053183.html
https://www.oracle.com/java/technologies/downloads/
https://www.eclipse.org/downloads/
https://jar-download.com/artifacts/redis.clients/jedis/3.5.1/source-code

 System.out.println("AUTH FAILED: " + authMsg);
 }

 //Key
 String key = "Best-seller Rankings";

 jedisClient.del(key);

 //Generate product data at random
 List<String> productList = new ArrayList<>();
 for(int i = 0; i < PRODUCT_KINDS; i ++) {
 productList.add("product-" + UUID.randomUUID().toString());
 }

 //Generate sales volume at random
 for(int i = 0; i < productList.size(); i ++) {
 int sales = (int)(Math.random() * 20000);
 String product = productList.get(i);
 //Insert sales volume into Redis SortedSet
 jedisClient.zadd(key, sales, product);
 }

 System.out.println();
 System.out.println(" "+key);

 //Obtain all lists and display the lists by sales volume
 Set<Tuple> sortedProductList = jedisClient.zrevrangeWithScores(key, 0, -1);
 for(Tuple product : sortedProductList) {
 System.out.println("Product ID: " + product.getElement() + ", Sales volume: "
 + Double.valueOf(product.getScore()).intValue());
 }

 System.out.println();
 System.out.println(" "+key);
 System.out.println(" Top 5 Best-sellers");

 //Obtain the top 5 best-selling products and display the products by sales volume
 Set<Tuple> sortedTopList = jedisClient.zrevrangeWithScores(key, 0, 4);
 for(Tuple product : sortedTopList) {
 System.out.println("Product ID: " + product.getElement() + ", Sales volume: "
 + Double.valueOf(product.getScore()).intValue());
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 finally {
 jedisClient.quit();
 jedisClient.close();
 }
 }

}

Step 4 Configure the connection address, port, and password for the DCS instance in the
example code file.

Step 5 Compile and run the code.

----End

Operation Result
Compile and run the preceding Demo code. The operation result is as follows:

Best-seller Rankings
Product ID: product-b290c0d4-e919-4266-8eb5-7ab84b19862d, Sales volume: 18433
Product ID: product-e61a0642-d34f-46f4-a720-ee35940a5e7f, Sales volume: 18334

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Product ID: product-ceeab7c3-69a7-4994-afc6-41b7bc463d44, Sales volume: 18196
Product ID: product-f2bdc549-8b3e-4db1-8cd4-a2ddef4f5d97, Sales volume: 17870
Product ID: product-f50ca2de-7fa4-45a3-bf32-23d34ac15a41, Sales volume: 17842
Product ID: product-d0c364e0-66ec-48a8-9ac9-4fb58adfd033, Sales volume: 17782
Product ID: product-5e406bbf-47c7-44a9-965e-e1e9b62ed1cc, Sales volume: 17093
Product ID: product-0c4d31ee-bb15-4c88-b319-a69f74e3c493, Sales volume: 16432
Product ID: product-a986e3a4-4023-4e00-8104-db97e459f958, Sales volume: 16380
Product ID: product-a3ac9738-bed2-4a9c-b96a-d8511ae7f03a, Sales volume: 15305
Product ID: product-6b8ad4b7-e134-480f-b3ae-3d35d242cb53, Sales volume: 14534
Product ID: product-26a9b41b-96b1-4de0-932b-f78d95d55b2d, Sales volume: 11417
Product ID: product-1f043255-a1f9-40a0-b48b-f40a81d07e0e, Sales volume: 10875
Product ID: product-c8fee24c-d601-4e0e-9d18-046a65e59835, Sales volume: 10521
Product ID: product-5869622b-1894-4702-b750-d76ff4b29163, Sales volume: 10271
Product ID: product-ff0317d2-d7be-4021-9d25-1f997d622768, Sales volume: 9909
Product ID: product-da254e81-6dec-4c76-928d-9a879a11ed8d, Sales volume: 9504
Product ID: product-fa976c02-b175-4e82-b53a-8c0df96fe877, Sales volume: 8630
Product ID: product-0624a180-4914-46b9-84d0-9dfbbdaa0da2, Sales volume: 8405
Product ID: product-d0079955-eaea-47b2-845f-5ff05a110a70, Sales volume: 7930
Product ID: product-a53145ef-1db9-4c4d-a029-9324e7f728fe, Sales volume: 7429
Product ID: product-9b1a1fd1-7c3b-4ae8-9fd3-ab6a0bf71cae, Sales volume: 5944
Product ID: product-cf894aee-c1cb-425e-a644-87ff06485eb7, Sales volume: 5252
Product ID: product-8bd78ba8-f2c4-4e5e-b393-60aa738eceae, Sales volume: 4903
Product ID: product-89b64402-c624-4cf1-8532-ae1b4ec4cabc, Sales volume: 4527
Product ID: product-98b85168-9226-43d9-b3cf-ef84e1c3d75f, Sales volume: 3095
Product ID: product-0dda314f-22a7-464b-ab8c-2f8f00823a39, Sales volume: 2425
Product ID: product-de7eb085-9435-4924-b6fa-9e9fe552d5a7, Sales volume: 1694
Product ID: product-9beadc07-aab0-438c-ac5e-bcc72b9d9c36, Sales volume: 1135
Product ID: product-43834316-4aca-4fb2-8d2d-c768513015c5, Sales volume: 256

 Best-seller Rankings
 Top 5 Best-sellers
Product ID: product-b290c0d4-e919-4266-8eb5-7ab84b19862d, Sales volume: 18433
Product ID: product-e61a0642-d34f-46f4-a720-ee35940a5e7f, Sales volume: 18334
Product ID: product-ceeab7c3-69a7-4994-afc6-41b7bc463d44, Sales volume: 18196
Product ID: product-f2bdc549-8b3e-4db1-8cd4-a2ddef4f5d97, Sales volume: 17870
Product ID: product-f50ca2de-7fa4-45a3-bf32-23d34ac15a41, Sales volume: 17842

2.3 Implementing Bullet-Screen and Social Comments
with DCS

Overview

Application Scenario

Scenarios such as bullet-screen comments in videos or live streaming and
commenting and replying on a social website require high live efficiency and
interactivity. A platform must ensure a very low latency to support such services.
Comments are sorted by time in reverse order. If a relational database is adopted,
the sorting efficiency becomes lower and lower as comments pile up.

Solution

Using DCS for Redis, a key-value list can be displayed in descending order from
multiple dimensions. Take live commenting as an example. Bullet-screen
comments can be ordered according to their weighted score calculated using their
timestamp and then displayed as sorted sets (zsets). The content can be directly
stored as values. Zset can also be applied to social websites. Since the quantity of
comments and replies is huge, they require ordered display and local persistence.
The primary key ID of a comment can be stored as a value, and the content of the
comment is stored in the database and queried with the ID.

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Prerequisites
● A DCS instance has been created, and is in the Running state.
● The network between the client server and the DCS instance is connected:

– When the client and the DCS Redis instance are in the same VPC:
By default, networks in a VPC can communicate with each other.

– When the client and the DCS Redis instance are in different VPCs in the
same region:
If the client and DCS Redis instance are not in the same VPC, connect
them by establishing a VPC peering connection. For details, see Does DCS
Support Cross-VPC Access?

– To access a Redis instance of another region on a client
If the client server and the Redis instance are not in the same region,
connect the network using Direct Connect. For details, see What Is Direct
Connect.

– For public access
For details about how to access a DCS Redis 4.0/5.0/6.0 instance on a
client over a public network, see Using Nginx for Public Access to DCS
or Using ELB for Public Access to DCS.

● You have installed JDK1.8 (or later) and a development tool (Eclipse is used
as an example) on the client server, and downloaded the Jedis client.
The development tools and clients mentioned in this document are for
example only.

Procedure

Step 1 Run Eclipse on the server, choose File > New Project to create a Java project, and
import the Jedis client as a library to the project.

Step 2 Choose New > Class to create a VideoBulletScreenDemo.java file.

Step 3 Copy the following demo code to the VideoBulletScreenDemo.java file.
● Sample code of bullet-screen comments in live streaming

package org.example.task;

import java.util.ArrayList;
import java.util.List;
import java.util.Set;
import java.util.UUID;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.Tuple;

public class VideoBulletScreenDemo {

 static final int MESSAGE_NUM = 30;

 public static void main(String[] args) {

 // Address and port for connecting to the Redis instance. Replace them with the actual values.
 String host = "127.0.0.1";
 int port = 6379;

 Jedis jedisClient = new Jedis(host,port);

 try {

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427002.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427002.html
https://support.huaweicloud.com/intl/en-us/productdesc-dc/en-us_topic_0032053183.html
https://support.huaweicloud.com/intl/en-us/productdesc-dc/en-us_topic_0032053183.html
https://www.oracle.com/java/technologies/downloads/
https://www.eclipse.org/downloads/
https://jar-download.com/artifacts/redis.clients/jedis/3.5.1/source-code

 // Password for connecting to the Redis instance. Replace it with the actual value.
 String authMsg = jedisClient.auth("******");

 if (!authMsg.equals("OK")){
 System.out.println("AUTH FAILED: " + authMsg);
 }

 String key = "Live comment list";

 jedisClient.del(key);

 // Randomly spawn bullets.
 List<String> messageList = new ArrayList<>();
 for (int i = 0; i < MESSAGE_NUM; i++){
 messageList.add("message-" + UUID.randomUUID().toString());
 }

 // Timestamp of random spawn.
 for (int i = 0; i < messageList.size(); i++){
 String message = messageList.get(i);
 int sales = (int)(Math.random()*1000);
 long time = System.currentTimeMillis() + sales;
 // Insert as sorted set of Redis.
 jedisClient.zadd(key,time,message);
 }

 System.out.println(" " + key);

 // Obtain all lists and output in chronological order.
 Set<Tuple> sortedMessageList = jedisClient.zrangeWithScores(key, 0, -1);
 for (Tuple message : sortedMessageList){
 System.out.println("bullets content: " + message.getElement() + ", sent time: " +
Double.valueOf(message.getScore()).longValue());
 }

 System.out.println();
 System.out.println(" The latest 5 bullets");

 Set<Tuple> sortedTopList = jedisClient.zrevrangeWithScores(key,0,4);
 for (Tuple product : sortedTopList){
 System.out.println("bullets content: " + product.getElement() + ", sent time: " +
Double.valueOf(product.getScore()).longValue());
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 jedisClient.quit();
 jedisClient.close();
 }

 }

}

● Sample code of replying to a comment on a social website
package org.example.task;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Set;
import java.util.UUID;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Tuple;
public class SiteCommentsDemo {
 // Total comments and replies.
 static final int COMMENT_NUM = 20;
 public static void main(String[] args) {
 // Address and port for connecting to the Redis instance. Replace them with the actual values.
 String host = "127.0.0.1";

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

 int port = 6379;

 Jedis jedisClient = new Jedis(host,port);
 try {
 // Password for connecting to the Redis instance. Replace it with the actual value.
 String authMsg = jedisClient.auth("******");
 if (!authMsg.equals("OK")){
 System.out.println("AUTH FAILED: " + authMsg);
 }
 String key = "List of replies to comments on a social website";
 jedisClient.del(key);
 HashMap<Integer, Comment> map = new HashMap<>();
 // Randomly spawn objects for comment replies.
 List<Comment> commentList = new ArrayList<>();
 for (int i = 0; i < COMMENT_NUM; i++){
 Comment comment = new Comment();
 comment.setId(i+1);
 comment.setContent(UUID.randomUUID().toString().substring(0,8));
 long time = System.currentTimeMillis();
 Thread.sleep(50);
 comment.setTime(time);
 // Randomly spawn replies.
 if (i > 0 && Math.random() < 0.5){
 comment.setParentId((int)(Math.random()*i) + 1);
 }
 commentList.add(comment);
 map.put(comment.getId(),comment);
 // Insert as sorted set of Redis.
 jedisClient.zadd(key,time,String.valueOf(comment.getId()));
 }
 System.out.println(" " + key);
 // Obtain all lists and output in chronological order.
 Set<Tuple> sortedCommentList = jedisClient.zrangeWithScores(key, 0, -1);
 for (Tuple comment : sortedCommentList){
 Integer commentId = Integer.valueOf(comment.getElement());
 Comment tmpComment = map.get(commentId);
 System.out.println("comment ID: " + comment.getElement() + " comment parent ID: " +
tmpComment.getParentId() + ", comment time: " +
Double.valueOf(comment.getScore()).longValue());
 }
 System.out.println();
 System.out.println(" The latest 5 replies");
 Set<Tuple> sortedTopList = jedisClient.zrevrangeWithScores(key,0,4);
 for (Tuple comment : sortedTopList){
 Integer commentId = Integer.valueOf(comment.getElement());
 Comment tmpComment = map.get(commentId);
 if (tmpComment.getParentId() != null){
 System.out.println("comment ID: " + comment.getElement() + " reply:" +
tmpComment.getParentId() + " comment content:" + tmpComment.getContent() + ", comment time:
" + Double.valueOf(comment.getScore()).longValue());
 }else {
 System.out.println("comment ID: " + comment.getElement() + ", comment time: " +
Double.valueOf(comment.getScore()).longValue());
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 jedisClient.quit();
 jedisClient.close();
 }
 }
 /**
 * comment data object
 */
 static class Comment{
 // Comment ID
 private Integer id;
 // Comment content

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

 private String content;
 // Comment time
 private Long time;
 // Comment parent ID of a reply
 private Integer parentId;
 public Integer getId() {
 return id;
 }
 public void setId(Integer id) {
 this.id = id;
 }
 public String getContent() {
 return content;
 }
 public void setContent(String content) {
 this.content = content;
 }
 public Long getTime() {
 return time;
 }
 public void setTime(Long time) {
 this.time = time;
 }
 public Integer getParentId() {
 return parentId;
 }
 public void setParentId(Integer parentId) {
 this.parentId = parentId;
 }
 }
}

Step 4 Configure the connection address, port, and password of the DCS Redis instance in
the sample code.

Step 5 Compile and run the code.

----End

Operation Result
● Sample code of bullet-screen comments in live streaming:

Live comment list
bullets content: message-07f1add5-2f85-4309-9f31-313c860b33dc, sent time: 1686902337377
bullets content: message-2062e817-3145-4d8b-af7f-46f334c8569c, sent time: 1686902337394
bullets content: message-ad36a0ca-e8bd-4883-a091-e12a25c00106, sent time: 1686902337396
bullets content: message-f02f9960-bb57-49ae-b7d8-6bd6d3ad3d14, sent time: 1686902337412
bullets content: message-5ca39948-866e-4e54-a469-f958cae843f6, sent time: 1686902337457
bullets content: message-5cc8b4ba-da61-4d01-9625-cf2e7337ef10, sent time: 1686902337489
bullets content: message-15378516-18ce-4da7-bd3c-35c57dd65602, sent time: 1686902337495
bullets content: message-1b280525-53e5-4fc6-a3e7-fb8e71eef85e, sent time: 1686902337540
bullets content: message-adf876d1-e747-414e-92a2-397fc329bd58, sent time: 1686902337541
bullets content: message-1d8d7901-164f-4dd4-abb4-6f2345164b0e, sent time: 1686902337582
bullets content: message-fb35b1b4-277a-48bf-b22b-80070aae8475, sent time: 1686902337667
bullets content: message-973b1b03-bf95-44d8-ab91-0c317b2d61b3, sent time: 1686902337755
bullets content: message-1481f883-757d-47f7-b8c0-df024d6e64a4, sent time: 1686902337770
bullets content: message-b79292ca-2409-43fb-aaf0-e33f3b9d9c8d, sent time: 1686902337820
bullets content: message-66b0e955-d509-4475-9ae5-12fb86cf9596, sent time: 1686902337844
bullets content: message-12b6d15a-037a-47ee-8294-8625d202c0a0, sent time: 1686902337907
bullets content: message-fbc06323-da2a-44b8-874b-d2cf1a737064, sent time: 1686902337927
bullets content: message-7a0f787c-aff1-422f-9e62-4beda0cd5914, sent time: 1686902337977
bullets content: message-8ba5e4e0-22af-4f80-90a6-35062967e0fd, sent time: 1686902337992
bullets content: message-fa9e1169-e918-4141-9805-87edcf84c379, sent time: 1686902338000
bullets content: message-5d17be15-ba2e-461f-aba5-65c20c21d313, sent time: 1686902338059
bullets content: message-dcedc840-1be7-496a-b781-5b79c2091fe5, sent time: 1686902338067
bullets content: message-9e39eb28-6629-4d4c-8970-2acdc0e81a5c, sent time: 1686902338102
bullets content: message-030b11fe-c258-4ca2-ac82-5e6ca1eb688f, sent time: 1686902338211
bullets content: message-93322018-a987-47ba-8093-3937dddda97d, sent time: 1686902338242

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

bullets content: message-bc04a9b0-ec83-4a24-83f6-0a4f25ee8896, sent time: 1686902338281
bullets content: message-c6dd96d0-c938-41e4-b5d8-6275fdf83050, sent time: 1686902338290
bullets content: message-12b70173-1b86-4370-a7ea-dc0ade135422, sent time: 1686902338312
bullets content: message-a39c2ef8-8167-4945-b60d-355db6c69005, sent time: 1686902338318
bullets content: message-2c3bf2fb-5298-472c-958c-c4b53d734e89, sent time: 1686902338326

The latest 5 bullets
bullets content: message-2c3bf2fb-5298-472c-958c-c4b53d734e89, sent time: 1686902338326
bullets content: message-a39c2ef8-8167-4945-b60d-355db6c69005, sent time: 1686902338318
bullets content: message-12b70173-1b86-4370-a7ea-dc0ade135422, sent time: 1686902338312
bullets content: message-c6dd96d0-c938-41e4-b5d8-6275fdf83050, sent time: 1686902338290
bullets content: message-bc04a9b0-ec83-4a24-83f6-0a4f25ee8896, sent time: 1686902338281

Process finished with exit code 0

● Sample code of replying to a comment on a social website:
List of replies to comments on a social website
comment id: 1 comment parentid: null, comment time: 1684745729506
comment id: 2 comment parentid: 1, comment time: 1684745729567
comment id: 3 comment parentid: null, comment time: 1684745729630
comment id: 4 comment parentid: 3, comment time: 1684745729692
comment id: 5 comment parentid: 3, comment time: 1684745729755
comment id: 6 comment parentid: 4, comment time: 1684745729819
comment id: 7 comment parentid: null, comment time: 1684745729879
comment id: 8 comment parentid: 6, comment time: 1684745729942
comment id: 9 comment parentid: null, comment time: 1684745730006
comment id: 10 comment parentid: 7, comment time: 1684745730069
comment id: 11 comment parentid: null, comment time: 1684745730132
comment id: 12 comment parentid: 9, comment time: 1684745730194
comment id: 13 comment parentid: null, comment time: 1684745730256
comment id: 14 comment parentid: 9, comment time: 1684745730320
comment id: 15 comment parentid: null, comment time: 1684745730382
comment id: 16 comment parentid: 1, comment time: 1684745730444
comment id: 17 comment parentid: null, comment time: 1684745730508
comment id: 18 comment parentid: 12, comment time: 1684745730570
comment id: 19 comment parentid: null, comment time: 1684745730631
comment id: 20 comment parentid: 12, comment time: 1684745730694

The latest 5 replies
comment id: 20 reply:12 comment content:877ba7f1, comment time: 1684745730694
comment id: 19, comment time: 1684745730631
comment id: 18 reply:12 comment content:b29f2077, comment time: 1684745730570
comment id: 17, comment time: 1684745730508
comment id: 16 reply:1 comment content:9f31200e, comment time: 1684745730444

2.4 Merging Game Servers with DCS

Overview

Application Scenario

Merging game servers is a strategy for some large online games. After running a
game for a while, game providers set up a new server to attract new players. As
users shift to the new server, game developers usually merge the new server and
the old one, so new and old players can play together for a better game
experience. During this process, game developers must consider how to
synchronize data among different servers.

Solution

DCS for Redis can be used in the following game server merge scenarios:

● Cross-server data synchronization

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

After servers merger, data on multiple servers needs to be synchronized to
ensure consistency. With the pub/sub message queuing mechanism of Redis,
data changes can be published to Redis channels. Other game servers can
subscribe to the channels to receive messages of changes.

● Cross-server resource sharing

After servers merge, resources on multiple servers, such as player props and
gold coins, can be shared. The distributed lock mechanism of Redis can ensure
mutual exclusion among multiple servers in resource access.

● Cross-server ranking

After servers merge, rankings on multiple servers can be combined to show
the ranking over all servers. Sorted sets in Redis can store ranking data and
perform calculation and query.

For details about cross-server resource sharing, see Serializing Access to
Frequently Accessed Resources. For details about cross-server ranking, see
Ranking with DCS.

The following describes how to implement cross-server data synchronization
through pub/sub message queuing in Redis.

NO TICE

When using Redis for game server merge, you need to consider data consistency,
performance, and security. Issues such as data errors, performance bottlenecks,
and security vulnerabilities should be avoided.

Prerequisites
● A DCS instance has been created, and is in the Running state.

● The network between the client server and the DCS instance is connected:

– When the client and the DCS Redis instance are in the same VPC:

By default, networks in a VPC can communicate with each other.

– When the client and the DCS Redis instance are in different VPCs in the
same region:

If the client and DCS Redis instance are not in the same VPC, connect
them by establishing a VPC peering connection. For details, see Does DCS
Support Cross-VPC Access?

– To access a Redis instance of another region on a client

If the client server and the Redis instance are not in the same region,
connect the network using Direct Connect. For details, see What Is Direct
Connect.

– For public access

For details about how to access a DCS Redis 4.0/5.0/6.0 instance on a
client over a public network, see Using Nginx for Public Access to DCS
or Using ELB for Public Access to DCS.

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427002.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427002.html
https://support.huaweicloud.com/intl/en-us/productdesc-dc/en-us_topic_0032053183.html
https://support.huaweicloud.com/intl/en-us/productdesc-dc/en-us_topic_0032053183.html

Procedure

Step 1 Use the Redis() method from the redis-py library to create a Redis client
connection on each game server.

Step 2 Use the pubsub() method to create a Redis subscriber and publisher on each
game server. They will be used for subscribing to messages from other game
servers and publishing data changes on the local server. When a server needs to
update data, it publishes updates to the Redis message queue. Other servers will
receive the updates and update their local data.

Step 3 Define a publish_update() method to publish updates, and use the
subscriber.listen() method in the listen_updates() method to listen to updates.

Step 4 Once an update is captured, the handle_update() method is invoked to process
the update and update local data. In game servers, the publish_update() method
can be invoked to publish updates, and the listen_updates() method can be
invoked to listen to updates.

----End

Sample Code
The sample code (Python 2) for using the redis-py-based pub/sub mechanism to
implement cross-server game data synchronization is as follows:

import redis
 # Create a Redis client connection. Replace the Redis instance connection address and port with the actual
values.
redis_client = redis.Redis(host='localhost', port=6379, db=0)
 # Create a subscriber.
subscriber = redis_client.pubsub()
subscriber.subscribe('game_updates')
 # Create a publisher.
publisher = redis_client
 # Publish updates.
def publish_update(update):
 publisher.publish('game_updates', update)
 # Process updates.
def handle_update(update):
 # Update local data.
 print('Received update:', update)
 # Listen to updates.
def listen_updates():
 for message in subscriber.listen():
 if message['type'] == 'message':
 update = message['data']
 handle_update(update)
 # Invoke publish_update().
publish_update('player_data_updated')
 # Invoke listen_updates().
listen_updates()

Result:

D:\workspace\pythonProject\venv\Scripts\python.exe D:\workspace\pythonProject\test2.py
Received update: b'player_data_updated'

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

2.5 Flashing E-commerce Sales with DCS

Overview

Application Scenario

An e-commerce flash sale is like an online auction. To attract customers,
merchants release a small number of scarce offerings on the platform. Platforms
receive dozens or even hundreds of more order placements than usual. However,
only a few customers can place orders successfully. The traffic distribution process
of an e-commerce flash sales system is as follows:

1. User requests: When users place orders, the requests enter the load balancing
server.

2. Load balancing: The load balancing server distributes requests to multiple
backend servers based on certain algorithms. The algorithms include round
robin, random, and least connections.

3. Service processing logic: Backend servers receive requests and verify the
requested quantity and user identity.

4. Inventory deduction: If the inventory is robust, the backend server deducts
stocks, generates an order, and returns a success message to the user. If the
inventory is insufficient, the backend server returns a failure message.

5. Order processing: Backend servers save the order information to the database
and perform asynchronous processing such as notifying users of the order
status.

6. Cache update: Backend servers update the inventory information in the cache
for the next flash sale request.

The database is accessed multiple times during the flash sale process. Row-level
locking is usually used to restrict access. The database can be accessed and an
order can be placed only after a lock is obtained. However, the database is blocked
by the sheer number of order requests.

Solution

As the cache of the database, DCS for Redis has the following advantages for
clients to access Redis for inventory query and order placement:

● Redis offers high read/write speed and concurrency performance to meet the
high concurrency requirements of e-commerce flash sales systems.

● Redis supports high-availability architecture such as master/standby and
cluster. Data persistence is supported, so data can be restored even if the
server breaks down.

● Redis supports transactions and atomic operations to guarantee the
consistency and accuracy of operations.

● Redis caches offering and user information to reduce the database load.

In this example, the hash structure of Redis shows the offering information. total
refers to the total amount, booked refers to the number of placed orders, and
remain refers to the inventory.

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

"product": {
"total": 200
"booked":0
"remain":200
}

During inventory deduction, the server sends a request to Redis for placing an
order. Redis is single-threaded, and Lua can guarantee the atomicity of multiple
commands. Run the following Lua script to deduct inventory:

local n = tonumber(ARGV[1])
if not n or n == 0 then
 return 0
end
local vals = redis.call(\"HMGET\", KEYS[1], \"total\", \"booked\", \"remain\");
local booked = tonumber(vals[2])
local remain = tonumber(vals[3])
if booked <= remain then
 redis.call(\"HINCRBY\", KEYS[1], \"booked\", n)
 redis.call(\"HINCRBY\", KEYS[1], \"remain\", -n)
 return n;
end
return 0

Prerequisites
● A DCS instance has been created, and is in the Running state.
● The network between the client server and the DCS instance is connected:

– When the client and the DCS Redis instance are in the same VPC:
By default, networks in a VPC can communicate with each other.

– When the client and the DCS Redis instance are in different VPCs in the
same region:
If the client and DCS Redis instance are not in the same VPC, connect
them by establishing a VPC peering connection. For details, see Does DCS
Support Cross-VPC Access?

– To access a Redis instance of another region on a client
If the client server and the Redis instance are not in the same region,
connect the network using Direct Connect. For details, see What Is Direct
Connect.

– For public access
For details about how to access a DCS Redis 4.0/5.0/6.0 instance on a
client over a public network, see Using Nginx for Public Access to DCS
or Using ELB for Public Access to DCS.

● JDK1.8 (or later) and IntelliJ IDEA have been installed on the client server.
Download the Jedis client.
The development tools and clients mentioned in this document are for
example only.

Procedure

Step 1 Run IntelliJ IDEA on the server. Create a Maven project, create a SecondsKill.java
file, and paste the sample code into it. In pom.xml, import Jedis:
<dependency>
 <groupId>redis.clients</groupId>
 <artifactId>jedis</artifactId>

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427002.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427002.html
https://support.huaweicloud.com/intl/en-us/productdesc-dc/en-us_topic_0032053183.html
https://support.huaweicloud.com/intl/en-us/productdesc-dc/en-us_topic_0032053183.html
https://www.oracle.com/java/technologies/downloads/
https://www.jetbrains.com/idea/
https://jar-download.com/artifacts/redis.clients/jedis/3.5.1/source-code

 <version>4.2.0</version>
</dependency>

Step 2 Compile and run the following demo (this example uses Java).

Change the Redis connection address and port to the actual values.
package com.huawei.demo;
import java.util.ArrayList;
import java.util.*;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

public class SecondsKill {
 private static void InitProduct(Jedis jedis) {
 jedis.hset("product", "total", "200");
 jedis.hset("product", "booked", "0");
 jedis.hset("product","remain", "200");
 }

 private static String LoadLuaScript(Jedis jedis) {
 String lua = "local n = tonumber(ARGV[1])\n"
 + "if not n or n == 0 then\n"
 + "return 0\n"
 + "end\n"
 + "local vals = redis.call(\"HMGET\", KEYS[1], \"total\", \"booked\", \"remain\");\n"
 + "local booked = tonumber(vals[2])\n"
 + "local remain = tonumber(vals[3])\n"
 + "if booked <= remain then\n"
 + "redis.call(\"HINCRBY\", KEYS[1], \"booked\", n)\n"
 + "redis.call(\"HINCRBY\", KEYS[1], \"remain\", -n)\n"
 + "return n;\n"
 + "end\n"
 + "return 0";
 String scriptLoad = jedis.scriptLoad(lua);

 return scriptLoad;
 }

 public static void main(String[] args) {
 JedisPoolConfig config = new JedisPoolConfig();
 // Maximum connections
 config.setMaxTotal(30);
 // Maximum idle connections
 config.setMaxIdle(2);
 // Connect to Redis. Replace the Redis instance connection address and port with the actual values.
 JedisPool pool = new JedisPool(config, "127.0.0.1", 6379);
 Jedis jedis = null;
 try {
 jedis = pool.getResource();
 jedis.auth("password"); //Configure the password of the instance. You do not need to set
this parameter for password-free access.
 System.out.println(jedis);

 // Initialize product information.
 InitProduct(jedis);

 // Load the Lua script.
 String scriptLoad = LoadLuaScript(jedis);

 List<String> keys = new ArrayList<>();
 List<String> vals = new ArrayList<>();
 keys.add("product");

 // Request 15 items.
 int num = 15;
 vals.add(String.valueOf(num));

 // Run the Lua script.

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

 jedis.evalsha(scriptLoad, keys, vals);
 System.out.println("total:"+jedis.hget("product", "total")+"\n"+"booked:"+jedis.hget("product",
 "booked")+"\n"+"remain:"+jedis.hget("product","remain"));

 } catch (Exception ex) {
 ex.printStackTrace();
 } finally {
 if (jedis != null) {
 jedis.close();
 }
 }
 }
}

Result:
total:200
booked:15
remain:185

----End

2.6 Reconstructing Application System Databases with
DCS

Overview
Application Scenario

With the development of database applications like the Internet, service demands
are increasing rapidly. As the data volume and concurrent access volume are
increasing exponentially, conventional relational databases can hardly support
upper-layer services. Conventional databases are faced with issues such as
complex structure, high maintenance costs, poor access performance, limited
functions, and difficulty adapting to changes in data models or modes.

Solution

As a cache layer between the application and database, Redis can solve the above
issues and improve data read speed, reduce database load, improve application
performance, and ensure data reliability.

Data can be migrated from conventional relational databases such as MySQL to
Redis. Since data in Redis is stored in the key-value structure, you need to convert
the data structure in conventional databases. The following sections describe how
to migrate a table from MySQL to DCS for Redis.

Prerequisites
● You have a DCS Redis instance as the target database. For details, see Buying

a DCS Redis Instance.

NO TE

If your source is the Huawei Cloud MySQL database, select a DCS Redis instance in the
same VPC as the database.

● You have a MySQL database with a table as the source data.
For example, create a table named student_info with 4 columns. After
migration, the values in the id column of the table will be the hash keys in

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713002.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713002.html

Redis, the names of the other columns will be the hash fields, and their values
will be the field values.

● The server of the MySQL database can communicate with the DCS instance.
– When the MySQL database and Redis instance are in the same VPC:

By default, networks in a VPC can communicate with each other.
– When the MySQL database and Redis instance are in different VPCs in

the same region:
If the VPC of the MySQL database and DCS Redis instance are not in the
same VPC, they can be connected using a VPC peering connection. For
details, see Does DCS Support Cross-VPC Access?.

– When the VPCs of the MySQL database and the DCS Redis instance are
not in the same region:
If the MySQL database and the Redis instance are not in the same region,
connect the network using Direct Connect. For details, see What Is Direct
Connect.

– For public access
For details about how to access a DCS Redis 4.0/5.0/6.0 instance on a
MySQL database server over a public network, see Using Nginx for
Public Access to DCS or Using ELB for Public Access to DCS.

● JDK1.8 (or later) and IntelliJ IDEA have been installed on the MySQL
database server. Download the Jedis client.
The development tools and clients mentioned in this document are for
example only.

Procedure

Step 1 Log in to the MySQL database server.

Step 2 Install the Redis client on the server to extract, transmit, and convert data. For
details about Redis client installation, see redis-cli.

Step 3 Analyze the source data structure, create the following script on the server, and
save the script as migrate.sql.
SELECT CONCAT(
"*8\r\n", #8 refers to the number of fields as follows. It depends on the data structure in the MySQL table.
'$', LENGTH('HMSET'), '\r\n', #HMSET is a Redis command in the data writing process.
'HMSET', '\r\n',
'$', LENGTH(id), '\r\n', #id is the first field after HMSET. It will be transferred into Redis as a hash key.
id, '\r\n',
'$', LENGTH('name'), '\r\n', #'name' will be transferred into the hash field as strings, and other arguments
such as 'birthday' are applied in the same way.
'name', '\r\n',

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427002.html
https://support.huaweicloud.com/intl/en-us/productdesc-dc/en-us_topic_0032053183.html
https://support.huaweicloud.com/intl/en-us/productdesc-dc/en-us_topic_0032053183.html
https://www.oracle.com/java/technologies/downloads/
https://www.jetbrains.com/idea/
https://jar-download.com/artifacts/redis.clients/jedis/3.5.1/source-code
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713004.html#section1

'$', LENGTH(name), '\r\n', #name is a variable representing the company name in the MySQL table. It will
be transferred to be the value corresponding to the field of the last argument 'name'. Other variables such
as birthday are applied in the same way.
name, '\r\n',
'$', LENGTH(' birthday'), '\r\n',
' birthday', '\r\n',
'$', LENGTH(birthday), '\r\n',
birthday, '\r\n',
'$', LENGTH('city'), '\r\n',
'city', '\r\n',
'$', LENGTH(city), '\r\n',
city, '\r'
)
FROM student_info AS s

Step 4 Run the following command on the server to migrate data:
mysql -h <MySQL host> -P <MySQL port> -u <MySQL username> -D <MySQL database name> -p --skip-
column-names --raw < migrate.sql | redis-cli -h <Redis host> -p<Redis port> --pipe -a <Redis password>

Table 2-1 Parameters

Parameter Description Example

-h Address of the MySQL
database.

xxxxxx

-P Port of MySQL. 3306

-u Username of MySQL. root

-D Database whose table is to be
migrated.

mysql

-p Password of MySQL. If MySQL
does not have a password,
leave this parameter blank.
For security, you can enter -p
only, and enter your password
when prompted by the
command window after
running the command.

xxxxxx

--skip-column-
names

The column names will not be
written in query results.

No need to be set.

--raw No escape in outputting
column values.

No need to be set.

-h after redis-cli Address of Redis. redis-xxxxxxxxxxxx.com

-p after redis-cli Port of Redis. 6379

--pipe Use Redis pipelining to
transmit data.

No need to be set.

-a Password of Redis. It does not
need to be set if your Redis
does not have a password.

xxxxxx

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

In this screenshot, the Redis instance does not have a password. In the result,
errors refers to the number of errors during running, and replies refers to the
number of replies received. If errors is 0, and replies is equal to the the number of
records in the MySQL table, the table is migrated successfully.

Step 5 One piece of MySQL data corresponds to one hash in Redis. Run the HGETALL
command for query and verification. Result:
[root@ecs-cmtest mysql-8.0]# redis-cli -h redis-xxxxxxxxxxxx.com -p 6379
redis-xxxxxxxxxxxx.com:6379> HGETALL 1
1) "name"
2) "Wilin"
3) " birthday"
4) "1995-06-12"
5) "city"
6) "Nanjing"
redis-xxxxxxxxxxxx.com:6379> HGETALL 4
1) "name"
2) "Anbei"
3) " birthday"
4) "1969-10-19"
5) "city"
6) "Dongjing"

NO TE

You can adjust the migration plan based on actual query needs. For example, you can
convert other columns in MySQL to the hash keys, and convert the id column to the field.

----End

2.7 Upgrading a Redis 3.0 Instance

Overview
Redis has not updated Redis 3.0 since the release of a minor version on May 19,
2019. Huawei Cloud DCS also announced the discontinuation of DCS for Redis 3.0
in March 2021.

You are advised to upgrade your DCS Redis 3.0 to a later version as soon as
possible. DCS for Redis 4.0/5.0/6.0 are compatible with Redis 3.0.

Currently, DCS does not support direct instance upgrades. In this case, migrate the
data of the earlier instance to that of a later one. Follow the instructions below to
upgrade a DCS Redis 3.0 instance by migrating data and switching IPs.

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

NO TE

● DCS Redis 3.0 instances support public access, while DCS Redis 4.0/5.0/6.0 instances do
not. If your services rely on public access, do not perform the upgrade.

● Upgrading the Redis version through data migration may have the following impacts on
services:

● The source and target Redis instance IP addresses need to be switched after data
migration is complete. During the switching, the instances will become read-only
within 1 minute and be interrupted for 30 seconds.

● If the target instance does not share the password as the source, the password
needs to be updated after data synchronization is complete. Stop the services
during the update. In this case, you are advised to use the same password for the
source and target instances.

● Upgrade instances during off-peak hours.

Prerequisites
● You have created a DCS Redis instance of a later version. This instance must

be in the same VPC and subnet, of the same instance type, configured with
the same password as the source instance, and have specifications greater
than or equal to the source instance. For example, to upgrade a 16 GB
master/standby DCS Redis 3.0 instance to a DCS Redis 5.0 one, prepare a
master/standby DCS Redis 5.0 instance with at least 16 GB memory.
For details about how to create a DCS Redis instance, see Buying a DCS Redis
Instance.

● You have manually backed up data of the source DCS Redis 3.0 instance. For
details about how to back up data, see How Do I Export DCS Redis Instance
Data?.

Migrating Instance Data

Step 1 Log in to the DCS console.

Step 2 Click in the upper left corner of the console and select the region where your
source instance is located.

Step 3 In the navigation pane, choose Data Migration. The migration task list is
displayed.

Step 4 In the upper right corner, click Create Online Migration Task.

Step 5 Enter the task name and description.

Step 6 Configure the VPC, subnet, and security group for the migration task.
● Select the VPC where the source and target Redis instances are, so they can

be connected with the task.
● The migration task uses a tenant IP address (Migration ECS displayed on the

Basic Information page of the task). If the target Redis has an IP whitelist,
this IP address must be added to the whitelist.

● To allow the VM used by the migration task to access the source and target
instances, set an outbound rule for the task's security group to allow traffic
through the IP addresses and ports of the source and target instances. By
default, all outbound traffic is allowed.

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713002.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713002.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427075.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427075.html
https://console-intl.huaweicloud.com/dcs/

Step 7 After the migration task is created, click Configure in the Operation column of
the task on the Online Migration tab page to configure the source Redis and
target Redis.

Step 8 Select Full + Incremental for Migration Type. IP switching can be performed on
the console only for instances using full and incremental migration. Selecting Full
requires a manual IP change of the Redis instance.

Table 2-2 Migration type description

Migration Type Description

Full Suitable for scenarios where services can be interrupted.
Data is migrated at one time. Source instance data
updated during the migration will not be migrated to
the target instance.

Full + incremental Suitable for scenarios requiring minimal service
downtime. The incremental migration parses logs to
ensure data consistency between the source and target
instances.
Once the migration starts, it remains Migrating until you
click Stop in the Operation column. After the migration
is stopped, data in the source instance will not be lost,
but data will not be written to the target instance. When
the transmission network is stable, the delay of
incremental migration is within seconds. The actual delay
depends on the transmission quality of the network link.

Step 9 If Migration Type is set to Full + Incremental, you can specify a bandwidth limit.

The data synchronization rate can be kept around the bandwidth limit.

Step 10 Specify Auto-Reconnect. If this option is enabled, automatic reconnections will be
performed indefinitely in the case of a network exception.

Full synchronization will be triggered and requires more bandwidth if incremental
synchronization becomes unavailable. Exercise caution when enabling this option.

Step 11 For Source Redis and Target Redis, select the Redis 3.0 instance to be upgraded
and the new Redis instance.

Step 12 If the source and target Redis instances are password-protected, enter Source
Redis Instance Password and Target Redis Instance Password, and click Test
Connection respectively to check whether the network can be connected. If the
source and target Redis instances are password-free, click Test Connection.

Step 13 Source DB and Target DB specify migration databases. For example, if you enter
5 for source DB and 6 for target DB, data in DB5 of the source Redis will be
migrated to the DB6 of the target Redis. If the source DB is not specified but the
target DB is specified, all source data will be migrated to the specified target DB
by default. If the target DB is not specified, data will be migrated to the
corresponding target DB. Leave Source DB and Target DB blank in this operation.

Step 14 Click Next.

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Step 15 Confirm the migration task details and click Submit.

Go back to the data migration task list. After the migration is successful, the task
status changes to Successful.

NO TE

● Once incremental migration starts, it remains Migrating.
● To manually stop migration, click Stop.
● After data migration, duplicate keys will be overwritten.

If the migration fails, click the migration task and check the log on the Migration
Logs page.

----End

Verifying the Migration
Before data migration, if the target Redis has no data, check data integrity after
the migration is complete in the following way:

1. Connect to the source Redis and the target Redis. Connect to Redis by
referring to redis-cli.

2. Run the info keyspace command to check the values of keys and expires.

3. Calculate the differences between the values of keys and expires of the
source Redis and the target Redis. If the differences are the same, the data is
complete and the migration is successful.

During full migration, source Redis data updated during the migration will not be
migrated to the target instance.

Switching DCS Instance IPs
The prerequisites for switching source and target Redis instance IP addresses are
as follows. The target Redis can be accessed automatically on a client after the
switch.

● The source and target must be basic edition Redis instances excluding Redis
Cluster ones. This function is unavailable for professional edition and Redis
Cluster instances.

● For sources of DCS Redis 3.0 instances, contact the administrator to enable
the whitelist for Redis 3.0 instance IP switches. The instance IP addresses can
be switched only when the source instance is a DCS Redis 3.0 instance and the
target instance is a basic edition DCS Redis 4.0, 5.0, or 6.0 instance.

● The IP addresses of a source or target instance with public access enabled
cannot be switched on the console. Manually change the IP addresses if
needed.

● Full + Incremental must be selected in Step 8.
● The source and target Redis instance ports must be consistent.

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713004.html

NO TICE

1. IP switching stops online migration tasks.
2. When the source is a Redis 3.0 instance, the instance will be read-only for one

minute and disconnected for 30 seconds during an IP switch.
3. If your application cannot reconnect to Redis or handle exceptions, you may

need to restart the application after the IP switching.
4. If the source is a master/standby instance, the IP address of the standby node

will not be switched. Ensure that this IP address is not used by your
applications.

5. If your applications use a domain name to connect to Redis, the domain name
will be used for the source instance. Select Yes for Switch Domain Name.

6. Ensure that the passwords of the source and target instances are the same. If
they are different, verification will fail after the switching.

7. After the IP addresses of a DCS Redis 3.0 instance are switched, synchronize the
security group of the source to the whitelist of the target.

Step 1 On the Data Migration > Online Migration page, when the migration task status
changes to Incremental migration in progress, choose More > Switch IP in the
Operation column.

Step 2 In the Switch IP dialog box, select whether to switch the domain name.

NO TE

● If a Redis domain name is used on the client, switch it or you must modify the domain
name on the client.

● If the domain name switch is not selected, only the instance IP addresses will be
switched.

Step 3 Click OK. The IP address switching task is submitted successfully. When the status
of the migration task changes to IP switched, the IP address switching is
complete.

----End

Verifying Service Functions
● Verify that service functions are normal. For example, check whether an error

is reported when the client accesses Redis.
● Check whether key performance metrics are normal, such as Connected

Clients, Ops per Second, CPU Usage, and Memory Usage.

Distributed Cache Service
Best Practices 2 Service Application

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

3 Network Connection

3.1 Using Nginx for Public Access to DCS

Overview

Currently, Huawei Cloud DCS Redis 4.0 and later cannot be bound with elastic IP
addresses (EIPs) and cannot be accessed over public networks directly.

This section describes how to access a single-node, master/standby, read/write
splitting, or Proxy Cluster DCS Redis 4.0, 5.0, or 6.0 instance by using a jump
server. This solution cannot be used to access a Redis Cluster instance over
public networks.

As shown in Figure 3-1, the ECS where Nginx is installed is a jump server. The ECS
is in the same VPC as the DCS Redis instances and can access the DCS Redis
instances through the subnet IP addresses. After an EIP is bound to the ECS, the
ECS can be accessed over the public network. Nginx can listen on multiple ports
and forward requests to different DCS Redis instances.

Figure 3-1 Accessing DCS Redis instances in a VPC by using Nginx

NO TE

Do not use public network access in the production environment. Client access exceptions
caused by poor public network performance will not be included in the SLA.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Buying an ECS
Step 1 Obtain the VPC where the DCS Redis instance is deployed.

As shown in the following figure, the master/standby instance is deployed in the
vpc-demo VPC.

Figure 3-2 DCS Redis instance details

Step 2 Buy an ECS. Configure the ECS with the vpc-demo VPC, bind an EIP to the ECS,
and select the bandwidth as required.

Figure 3-3 ECS details

----End

Installing Nginx
After buying an ECS, install Nginx on the ECS. The following uses CentOS 7.x as an
example to describe how to install Nginx. The commands vary depending on the
OS.

Step 1 Run the following command to add Nginx to the Yum repository:
sudo rpm -Uvh http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-
centos-7-0.el7.ngx.noarch.rpm

Step 2 Run the following command to check whether Nginx has been added successfully:
yum search nginx

Step 3 Run the following command to install Nginx:
sudo yum install -y nginx

Step 4 Run the following command to install the stream module:
yum install nginx-mod-stream --skip-broken

Step 5 Run the following commands to start Nginx and set it to run automatically upon
system startup:

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

sudo systemctl start nginx.service
sudo systemctl enable nginx.service

Step 6 In the address box of a browser, enter the server address (the EIP of the ECS) to
check whether Nginx is installed successfully.

If the following page is displayed, Nginx has been installed successfully.

----End

Setting Up Nginx
After installing Nginx, configure request forwarding rules to specify the ports that
Nginx listens on and the DCS Redis instances that Nginx forwards requests to.

Step 1 Open and modify the configuration file.
cd /etc/nginx
vi nginx.conf

The following is a configuration example. To access multiple DCS Redis instances
over public networks, configure multiple server sections and configure the DCS
Redis instance connection addresses for proxy_pass.

stream {
 server {
 listen 8080;
 proxy_pass 192.168.0.5:6379;
 }
 server {
 listen 8081;
 proxy_pass 192.168.0.6:6379;
 }
}

NO TE

Set proxy_pass to the IP address of the DCS Redis instance in the same VPC. You can obtain
the IP address from the Connection area on the DCS instance details page.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Figure 3-4 Adding Nginx configurations

Step 2 Restart Nginx.
service nginx restart

Step 3 Verify whether Nginx has been started.
netstat -an|grep 808

Figure 3-5 Starting Nginx and verifying the start

If Nginx is listening on ports 8080 and 8081, Nginx has been started successfully.

----End

(Optional) Persistent Connections
If persistent connections ("pconnect" in Redis terminology) are required for public
network access, add the following configuration in Configuring Nginx:
● Timeout of a connection from Nginx to the server

stream {
 server {
 listen 8080;
 proxy_pass 192.168.0.5:6379;
 proxy_socket_keepalive on;
 proxy_timeout 60m;
 proxy_connect_timeout 60s;
 }
 server {
 listen 8081;
 proxy_pass 192.168.0.6:6379;
 proxy_socket_keepalive on;
 proxy_timeout 60m;
 proxy_connect_timeout 60s;
 }
}

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

The default value of proxy_timeout is 10m (10 minutes). You can set it to
60m or other values as required. For details about this parameter, see the
Nginx official website.

● Timeout of a connection from the client to Nginx
http {
 keepalive_timeout 3600s;
}

The default value of keepalive_timeout is 75s. You can set it to 3600s or
other values as required. For details about this parameter, see the Nginx
official website.

Accessing DCS Redis Instances Using Nginx

Step 1 Log in to the ECS console and check the security group rules of the ECS that serves
as the jump server. Ensure that access over ports 8080 and 8081 is allowed.

1. Click the ECS name to go to the details page.
2. On the Security Groups tab page, click Modify Security Group Rule. The

security group configuration page is displayed.

Figure 3-6 Checking the ECS security group

Figure 3-7 Adding an inbound rule for the security group

Step 2 In the public network environment, open the redis-cli and run the following
command to check whether the login and query are successful.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

http://nginx.org/en/docs/stream/ngx_stream_proxy_module.html#
http://nginx.org/en/docs/stream/ngx_stream_proxy_module.html#
http://nginx.org/en/docs/http/ngx_http_core_module.html#http
http://nginx.org/en/docs/http/ngx_http_core_module.html#http

NO TE

Ensure that redis-cli has been installed in the public network environment by referring to
redis-cli.

./redis-cli -h {myeip} -p {port} -a {mypassword}

In the preceding command, {myeip} indicates the host connection address, which
should be replaced with the EIP of the ECS. Replace {port} with the listening port
of Nginx.

As shown in the following figures, the two listening ports are 8080 and 8081,
which correspond to two DCS Redis instances.

Figure 3-8 Accessing the first DCS Redis instance using Nginx

Figure 3-9 Accessing the second DCS Redis instance using Nginx

----End

3.2 Using SSH Tunneling for Public Access to DCS

Overview

Currently, Huawei Cloud DCS Redis 4.0 and later cannot be bound with elastic IP
addresses (EIPs) and cannot be accessed over public networks directly.

This section describes how to create an SSH tunnel as a proxy to connect your DCS
instance and local computer to achieve proxy forwarding. In this way, single-node,
master/standby, read/write splitting, and Proxy Cluster DCS Redis 4.0/5.0/6.0
instances in a VPC can be accessed. This solution is unavailable for public access
to Redis Cluster instances.

NO TE

Do not use public network access in the production environment. Client access exceptions
caused by poor public network performance will not be included in the SLA.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713004.html

Prerequisites
● A DCS instance has been created, and is in the Running state.
● Apply for an Elastic Cloud Server (ECS). If the following prerequisites are met,

the ECS can communicate with the DCS instance and you can remotely
connect to the ECS using SSH from a local computer.
– The ECS is bound with an EIP for public access.
– The VPC and subnet configured for the ECS are the same as those

configured for the DCS instance.
– Security group rules have been correctly configured for the ECS.
– The ECS runs the Linux OS.

● You have a local computer that can connect to the Internet. Tools such as
MobaXterm and the Redis client have been installed.

Procedure

Step 1 Open MobaXterm on the local PC.

Step 2 Create an SSH session for connecting to the ECS using port 22.

Figure 3-10 Creating an SSH session

Step 3 After the SSH is configured, enter the username and password to log in to the
ECS. After login, enter TMOUT=0 to prevent the session from being automatically
closed due to timeout.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Figure 3-11 Entering "TMOUT=0"

Step 4 Click Tunneling to create a tunnel.

Figure 3-12 Creating a tunnel

Step 5 Set the local IP address to 127.0.0.1 and start the tunnel.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Figure 3-13 Starting the tunnel

Step 6 Open the Redis client on the local computer. The following uses the Redis CLI as
an example. Run the following command to access the DCS instance:
Redis-cli -h 127.0.0.1 -p 3306 -a {password}

Parameter description:

● -h {host name}: localhost or 127.0.0.1, which is the same as the local IP
address configured for the tunnel.

● -p {port number}: 3306, which is the same as the forward port configured for
the tunnel.

● -a {password}: password of the DCS instance.

Step 7 If the connection is successful, the following information is displayed.

Figure 3-14 Successfully connecting to a DCS instance

----End

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

3.3 Using ELB for Public Access to DCS

Overview
Currently, Huawei Cloud DCS Redis 4.0 and later cannot be bound with elastic IP
addresses (EIPs) and cannot be accessed over public networks directly. This section
describes how to access a single-node, master/standby, read/write splitting, or
Proxy Cluster instance or a node in a Redis Cluster instance through public
networks by enabling cross-VPC backend on a load balancer.

NO TE

● Due to cluster node address translation, you cannot access a Redis Cluster as a whole.
You can only access individual nodes in the cluster.

● Do not use public network access in the production environment. Client access
exceptions caused by poor public network performance will not be included in the SLA.

The following figure shows the process for accessing DCS through ELB.

Figure 3-15 Process for accessing DCS through ELB

Interconnecting ELB with a DCS Instance

Step 1 Create a VPC or use an existing one.

Step 2 Buy a DCS Redis instance. Record the IP address and port number of the
instance.

Step 3 Create a dedicated load balancer.
● A shared load balancer does not support cross-VPC backend servers.

Therefore, it cannot be bound to a DCS instance.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0013935842.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713002.html
https://support.huaweicloud.com/intl/en-us/usermanual-elb/elb_lb_000006.html

● For Specification, select Network load balancing (TCP/UDP).
● To access the DCS instance over public networks, enable IP as a Backend

when creating a dedicated load balancer.

Step 4 Add a TCP listener to the dedicated load balancer.
● On the Add Backend Server tab page, choose IP as Backend Servers > Add

IP as Backend Server.
● Enter the IP address, port, and other parameters of your DCS instance.
● A Redis Cluster DCS instance contains multiple master/replica pairs. When

configuring IP as a Backend, you can add the IP address and port of any
master or replica node.

● If you enable Health Check, you do not need to manually configure the port.
By default, the service port of the backend server will be used.

Step 5 Create a VPC peering connection. For the local VPC, select the VPC where your
load balancer is located. For the peer VPC, select the VPC where your DCS instance
is located.

NO TE

Even if your load balancer and DCS instance are in the same VPC, you still need to create a
VPC peering connection. For the local VPC, select the VPC where your load balancer and
DCS instance are located. For the peer VPC, select another VPC.

Step 6 Click the name of the VPC peering connection to go to its details page. Obtain
Local VPC CIDR Block and Peer VPC CIDR Block.

Step 7 Click Add Route and configure local and peer routes for the VPC peering
connection.

1. Local route: Configure the peer VPC CIDR block in Destination on the Add
Route dialog box.

2. Peer route: Select Add a route for the other VPC and configure the local VPC
CIDR block in Destination, and click OK.

NO TE

If the load balancer and the DCS instance are in the same VPC, you do not need to
add a peer route.

Step 8 Perform a health check on the IP address of the DCS instance. If the health check
result is Healthy, the added cross-VPC backend IP address can be used.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

https://support.huaweicloud.com/intl/en-us/usermanual-elb/elb_ug_jt_0006.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0046655038.html

1. In the navigation pane of Network Console, choose Elastic Load Balance >
Backend Server Groups.

2. Click the name of the created backend server group to go to its details page.
3. On the Backend Servers > IP as Backend Servers tab page, view the health

check result of the DCS instance IP address.

----End

Accessing a DCS Instance on a Client
● Accessing a single node of a Redis Cluster instance on a client through ELB

a. View the basic information of the load balancer created in Step 3.

b. Buy an ECS, log in to it, and install the Redis client by referring to redis-
cli.

c. On the Redis client, connect to the DCS instance using the IP address and
port number configured in Step 4. If you use the EIP and port number of
the load balancer, an error will be reported.

● Accessing a single-node, master/standby, read/write splitting, or Proxy Cluster
instance on a client through ELB

a. View the IPv4 EIP and port number of the load balancer created in Step
3.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

https://support.huaweicloud.com/intl/en-us/usermanual-ecs/ecs_03_7002.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713004.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713004.html

b. Buy an ECS, log in to it, and install the Redis client by referring to redis-
cli.

c. Use redis-cli to access the load balancer using its EIP and port number
(which is 80).

d. Write a key through ELB.

e. Log in to the DCS console. On the Cache Manager page, choose More >
Connect to Redis in the row that contains the DCS instance created in
Step 2. Check whether the key written in d exists.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

https://support.huaweicloud.com/intl/en-us/usermanual-ecs/ecs_03_7002.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713004.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713004.html

3.4 Connecting a Client to DCS Through CCE

Overview

With the development of the container technology, more and more applications
are deployed in containers. This section describes how to deploy a Redis client in a
Cloud Container Engine (CCE) cluster container and connect it to DCS.

Prerequisites

Prepare the following resources:

● VPC and subnet, for example, vpc-test. For details, see Creating a VPC.

(Optional) Create two subnets. Place your DCS instance in one subnet (subnet
1) and your CCE cluster in the other (subnet 2).

● DCS instance, for example, dcs-test. For details, see Buying a DCS Redis
Instance.

When creating a DCS instance, select the created VPC (vpc-test) and subnet
1.

● CCE cluster, for example, cce-test. For details, see Buying a CCE Cluster.

When creating a CCE cluster, set Network Model to VPC network, and select
VPC vpc-test and subnet 2.

● CCE node pool, for example, cce-test-nodepool. For details, see Creating a
Node Pool.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0013935842.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713002.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713002.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0012.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0012.html

When creating a node pool, set Node Type to Elastic Cloud Server (VM),
Container Engine to Docker, OS to CentOS 7.6, and bind an existing EIP or
create one.

Procedure

Creating a Client Image

Step 1 Download a Redis client.

1. Log in to the CCE cluster node.
Click the name of the created node pool. On the displayed page, click Remote
Login in the upper right corner.

2. Run the gcc --version command to check whether the GCC compiler for
compiling the Redis program is installed in the OS. The following figure shows
that the GCC compiler has been installed.

If the GCC compiler is not installed, run the following commands to install it:
yum -y install gcc
yum -y install gcc-c++

3. Run the following command to create the redis directory in the home
directory, and then go to the directory:
cd /home && mkdir redis && cd redis

4. Run the following command to download the Redis client. The following takes
version 5.0.13 as an example.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

wget https://download.redis.io/releases/redis-5.0.13.tar.gz

5. Decompress the Redis package, go to the Redis directory, run the compilation
command, and return to the Redis directory.
tar xvzf redis-5.0.13.tar.gz
cd redis-5.0.13 && make redis-cli
cd ..

Step 2 Create a Dockerfile.

Run the vim Dockerfile command to create a Dockerfile and enter the following
information:

FROM centos:7
RUN useradd -d /home/redis -m redis
COPY ./redis-5.0.13 /home/redis/redis-5.0.13
RUN chown redis:redis /home/redis/redis-5.0.13 -R
USER redis
ENV HW_HOME=/home/redis/redis-5.0.13
ENV PATH=$HW_HOME/src:$PATH
WORKDIR /home/redis/

Press Esc to exit the editing mode and run :wq! to save the configuration and exit
the editing interface.

Step 3 Build a client image.

1. Choose Software Repository for Container from the service list to go to the
SWR console.

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. You can also use an existing
organization. (Click Organization Management in the navigation pane to
view organizations.)

3. On the SWR Dashboard page, click Generate Login Command in the upper
right corner to obtain and copy the login command. (swr.xxxxxx.com at the
end of the login command is the image repository address.)

Figure 3-16 Obtaining a login command

4. Run the copied login command on the CCE node to log in to SWR.

Figure 3-17 Logging in to SWR

5. Run the following command to build an image:
docker build -t {Image repository address}/{Organization name}/{Image name :version}.

Image repository address indicates the address of the image repository, which
is at the end of the login command. Organization name indicates the name of

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

the organization created in b. Image name indicates the name of the image
to be built. version indicates the image version. Replace them with the actual
values. For example, docker build -t swr.xxxxxx.com/study1/redis:v1.

Figure 3-18 Building an image

Step 4 Run the following command to upload the client image to SWR:
docker push {Image repository address}/{Organization name}/{Image name :version}

Figure 3-19 Uploading an image

Step 5 After the image is uploaded, you can view it on the My Images page of the SWR
console.

Figure 3-20 Viewing images

----End

Deploying an Image on CCE

Step 1 On the DCS console, click the created Redis instance dcs-test to go to the details
page.

Step 2 In the Connection area, obtain the IP address and port number of the Redis
instance.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Step 3 Click Connect to Redis in the upper right corner to use the Web CLI.

Step 4 On the Web CLI, run a SET command. The following figure uses SET hello "hello
redis!" as an example.

Step 5 On the CCE console, click the created CCE cluster cce-test.

Step 6 In the navigation pane, choose Workloads. Click Create Workload in the upper
right corner. For details, see Creating a Workload.
● In the Container Settings > Basic Info area, set Image Name to the name of

the created Redis image.
● In the Container Settings > Lifecycle area, configure the parameters as

follows:
Command: /bin/bash
Args: -c
while true ;do sleep 10;/home/redis/redis-5.0.13/src/redis-cli -h 10.0.0.0 -p
6379 -a DCS instance password get hello;done
In the preceding command, 10.0.0.0 indicates the IP address of the DCS
instance, 6379 indicates the port number of the DCS instance, DCS instance
password indicates the password of the DCS instance, and hello indicates the
data set when you connect to Redis through the Web CLI. Replace them with
the actual values.

Figure 3-21 Configuring lifecycle parameters

Step 7 If the workload is in the Running state, it has been successfully created.

Figure 3-22 Checking the workload status

----End

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0047.html

Testing the Redis Connection

Step 1 Log in to the CCE cluster node. For details, see Step 1.1.

Step 2 Download and configure the kubectl configuration file by referring to Connecting
to a Cluster Using kubectl.

Step 3 Run the following command. If Running is returned, the Redis container is
running.
kubectl get pod -n default

Step 4 Run the following command to view the logs of the Redis container:
kubectl logs --tail 10 -f redis-xxxxxxxx -n default

redis-xxxxxxxx indicates the name of the created workload pod. (Click the
workload name to view the workload pod name.)

In the command output, the information returned by DCS is hello redis!, which is
the data set when you connected to Redis.

Step 5 The test is complete.

----End

3.5 Configuring Redis Client Retry

Importance of Retry

Both the client and server may encounter temporary faults (such as transient
network or disk jitter, service unavailability, or invoking timeout, due to
infrastructure or running environment reasons). As a result, Redis operations may
fail. You can design automated retry mechanisms to reduce the impact of such
faults and ensure successful execution.

Scenarios Where Redis Operations Fail

Scenario Description

Master/standby
switchover
triggered by a
fault

If the master node is faulty due to Redis underlying
hardware or other reasons, a master/standby switchover is
triggered to ensure that the instance is still available. A
master/standby switchover causes instance disconnection
for 15 to 30s:

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html

Scenario Description

Read-only during
specification
modification

During specification modification, the instance may be
disconnected for seconds and read-only for minutes.
For more information about the impact of specification
modification, see Modifying Specifications.

Request blockage
caused by slow
queries

Operations whose time complexity is O(N) cause slow
queries and request blockage. In this case, other client
requests may temporarily fail.

Complex network
environment

Due to the complex network environment between the
client and the Redis server, network jitter, packet loss, and
data retransmission may occur occasionally. In this case,
client requests may temporarily fail.

Complex hardware
issues

Client requests may temporarily fail due to occasional
hardware faults, such as VM HA and disk latency jitter.

Recommended Retry Rules
Retry Rule Description

Retry only
idempotent
operations.

Timeout may occur in any of the following phases:
● A command is successfully sent by the client but has

not reached Redis.
● The command has reached Redis, but the execution

times out.
● Redis has executed the command, but the result

returned to the client times out.
A retried operation may be repeatedly executed in Redis.
Therefore, not all operations are suitable to be retried. You
are advised to retry only idempotent operations, such as
running the SET command. For example, if you run the
SET a b command multiple times, the value of a can only
be b or the execution fails. If you run LPUSH mylist a,
which is not idempotent, mylist may contain multiple a
elements.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713006.html

Retry Rule Description

Configure proper
retry times and
interval.

Configure the retry times and interval based on service
requirements in actual scenarios to prevent the following
problems:
● If the number of retries is insufficient or the interval is

too long, the application may fail to complete
operations.

● If the number of retries is too large or the interval is
too short, the application may occupy too many system
resources and the server may be blocked due to too
many requests.

Common retry interval policies include immediate retry,
fixed-interval retry, exponential backoff retry, and random
backoff retry.

Avoid retry
nesting.

Retry nesting may cause the retry interval to be
exponentially amplified.

Record retry
exceptions and
print failure
reports.

During retry, you can print retry error logs at the WARN
level.

Jedis Client Retry Configurations
● Retries are not supported in native JedisPool mode (for single-node, master/

standby, and Proxy Cluster instances). However, you can implement retries by
referring to JedisClusterCommand.

● Retries are supported in JedisCluster mode. You can set the maxAttempts
parameter to define the number of retry times when a failure occurs. The
default value is 5. By default, all JedisCluster operations invoke the retry
method.
Example code:
@Bean
JedisCluster jedisCluster() {
 Set<HostAndPort> hostAndPortsSet = new HashSet<>();
 hostAndPortsSet.add(new HostAndPort("{dcs_instance_address}", 6379));
 JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
 jedisPoolConfig.setMaxIdle(100);
 jedisPoolConfig.setMinIdle(1);
 jedisPoolConfig.setMaxTotal(1000);
 jedisPoolConfig.setMaxWaitMilis(2000);
 jedisPoolConfig.setMaxAttempts(5);
 return new JedisCluster(hostAndPortsSet, jedisPoolConfig);
}

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

https://github.com/redis/jedis/blob/v3.7.0/src/main/java/redis/clients/jedis/JedisClusterCommand.java

Table 3-1 Recommended Jedis connection pool parameter settings

Parameter Description Recommended Setting

maxTotal Maximum number of
connections

Set this parameter based
on the number of HTTP
threads of the web
container and reserved
connections. Assume
that the
maxConnections
parameter of the Tomcat
Connector is set to 150
and each HTTP request
may concurrently send
two requests to Redis,
you are advised to set
this parameter to at
least 400 (150 x 2 +
100).
Limit: The value of
maxTotal multiplied by
the number of client
nodes (CCE containers or
service VMs) must be
less than the maximum
number of connections
allowed for a single DCS
Redis instance.
For example, if
maxClients of a master/
standby DCS Redis
instance is 10,000 and
maxTotal of a single
client is 500, the
maximum number of
clients is 20.

maxIdle Maximum number of
idle connections

Use the same
configuration as
maxTotal.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Parameter Description Recommended Setting

minIdle Minimum number of idle
connections

Generally, you are
advised to set this
parameter to 1/X of
maxTotal. For example,
the recommended value
is 100.
In performance-sensitive
scenarios, you can set
this parameter to the
value of maxIdle to
prevent the impact
caused by frequent
connection quantity
changes. For example,
set this parameter to
400.

maxWaitMillis Maximum waiting time
for obtaining a
connection, in
milliseconds

The recommended
maximum waiting time
for obtaining a
connection from the
connection pool is the
maximum tolerable
timeout of a single
service minus the
timeout for command
execution. For example,
if the maximum
tolerable HTTP failure is
15s and the timeout of
Redis requests is 10s, set
this parameter to 5s.

timeout Command execution
timeout, in milliseconds

This parameter indicates
the maximum timeout
for running a Redis
command. Set this
parameter based on the
service logic. You are
advised to set this
timeout to least 210 ms
to ensure network fault
tolerance. For special
detection logic or
environment exception
detection, you can adjust
this timeout to seconds.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Parameter Description Recommended Setting

minEvictableIdleTimeMil-
lis

Idle connection eviction
time, in milliseconds. If a
connection is not used
for a period longer than
this, it will be released.

If you do not want the
system to frequently re-
establish disconnected
connections, set this
parameter to a large
value (xx minutes) or set
this parameter to –1 and
check idle connections
periodically.

timeBetweenEviction-
RunsMillis

Interval for detecting idle
connections, in
milliseconds

The value is estimated
based on the number of
idle connections in the
system. For example, if
this interval is set to 30s,
the system detects
connections every 30s. If
an abnormal connection
is detected within 30s, it
will be removed. Set this
parameter based on the
number of connections.
If the number of
connections is too large
and this interval is too
short, request resources
will be wasted. If there
are hundreds of
connections, you are
advised to set this
parameter to 30s. The
value can be dynamically
adjusted based on
system requirements.

testOnBorrow Indicates whether to
check the connection
validity using the ping
command when
borrowing connections
from the resource pool.
Invalid connections will
be removed.

If your service is
extremely sensitive to
connections and the
performance is
acceptable, you can set
this parameter to True.
Generally, you are
advised to set this
parameter to False to
disable idle connection
detection.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

Parameter Description Recommended Setting

testWhileIdle Indicates whether to use
the ping command to
monitor the connection
validity during idle
resource monitoring.
Invalid connections will
be destroyed.

True

testOnReturn Indicates whether to
check the connection
validity using the ping
command when
returning connections to
the resource pool. Invalid
connections will be
removed.

False

maxAttempts Number of connection
retries when JedisCluster
is used

Recommended value: 3–
5. Default value: 5.
Set this parameter based
on the maximum
timeout intervals of
service APIs and a single
request. The maximum
value is 10. If the value
exceeds 10, the
processing time of a
single request is too
long, blocking other
requests.

Distributed Cache Service
Best Practices 3 Network Connection

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

4 Usage Guide

4.1 DCS Data Security
Security is a shared responsibility between Huawei Cloud and you. Huawei Cloud
is responsible for the security of cloud services to provide a secure cloud. As a
tenant, you should properly use the security capabilities provided by cloud services
to protect data, and securely use the cloud. For details, see Shared
Responsibilities.

This section provides actionable guidance for enhancing the overall security of
using DCS. You can continuously evaluate the security status of your DCS
resources, enhance their overall security defense by combining multiple security
capabilities provided by DCS, and protect data stored in DCS from leakage and
tampering both at rest and in transit.

Make security configurations from the following dimensions to meet your service
needs.

● Protecting Data Through Access Control
● Encrypting Data Before Storage
● Data Restoration and Disaster Recovery
● Transmission Encryption with SSL
● Checking for Abnormal Data Access
● Using the Latest SDKs for Better Experience and Security
● Using Other Cloud Services for Additional Data Security

Protecting Data Through Access Control
Correctly use the access control capability provided by DCS to prevent your data
from being stolen or damaged.

1. Set only the minimum permissions for IAM users with different roles to
prevent data leakage or misoperations caused by excessive permissions.
To better isolate and manage permissions, you are advised to configure an
independent IAM administrator and grant them the permission to manage
IAM policies. The IAM administrator can create different user groups based on

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

https://support.huaweicloud.com/intl/en-us/productdesc-dcs/dcs-pd-221112.html
https://support.huaweicloud.com/intl/en-us/productdesc-dcs/dcs-pd-221112.html

your service requirements. User groups correspond to different data access
scenarios. By adding users to user groups and binding IAM policies to user
groups, the IAM administrator can grant different data access permissions to
employees in different departments based on the principle of least privilege.
For details, see Permissions Management.

2. Configure a whitelist or security group to protect your data from
abnormal reads or other operations.

By configuring an IP address whitelist or inbound and outbound security
group rules, you can control the network range for connecting to your
instance and prevent exposure to untrusted third parties.

DCS Redis 4.0/5.0/6.0 basic edition instances are controlled by whitelists. For
details, see Managing IP Address Whitelist.

DCS Redis 6.0 professional instances are controlled by security group rules. For
details, see How Do I Configure a Security Group? Do not set the source to
0.0.0.0/0 in the inbound rules of a security group.

3. Do not use high-risk commands, to prevent attackers from directly
damaging Redis.

You can rename high-risk commands to disable them if they are not used in
your service. Learn more about disabled commands and commands that
can be renamed.

4. Use a non-default port to prevent scanning attacks.

The default listening port of the Redis server is 6379, which is vulnerable to
scanning attacks. You can use a port in the range from 1 to 65535. For details,
see Customizing a Port.

5. Limit the maximum number of client connections to avoid resource
exhaustion and DoS risks.

The maxclients parameter of Redis determines the maximum number of
clients that can be concurrently connected to an instance. The default value is
10000, and the value can range from 1000 to 50000. Excess connection
requests will be rejected.

Set a proper client connection limit based on your application scenario.
For details about how to modify the maxclients parameter, see Modifying
Configuration Parameters.

6. Limit the idle time of Redis connections based on service requirements.

To prevent idle client connections from occupying resources for a long time,
you can set the timeout parameter on the console. Client connections that
remain idle for the period specified by this parameter will be closed. The
default value of timeout is 0, indicating that the server does not proactively
disconnect idle clients. The value ranges from 0 to 7200, in seconds.

You are not advised to set it to 0. For example, you can set it to 3,600
seconds. For details about how to modify the timeout parameter, see
Modifying Configuration Parameters.

7. Configure a password for accessing your DCS instance to prevent
unauthorized clients from operating it by mistake. In this way, clients can
be authenticated for access, improving instance security.

You can set a password when buying an instance, or reset the password of
an existing instance.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

https://support.huaweicloud.com/intl/en-us/productdesc-dcs/ProductDescPrivilegeManagement.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-190812001.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0713002.html
https://support.huaweicloud.com/intl/en-us/productdesc-dcs/dcs-pd-210209002.html#section2
https://support.huaweicloud.com/intl/en-us/productdesc-dcs/dcs-pd-210209002.html#section3
https://support.huaweicloud.com/intl/en-us/productdesc-dcs/dcs-pd-210209002.html#section3
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427036.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0312024.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0312024.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0312024.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713002.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0312039.html

8. Use different DCS instances for different services to prevent instance
faults from affecting multiple services.

Encrypting Data Before Storage
RDB and AOF persistent files in open-source Redis do not support encryption.
Therefore, DCS does not support data encryption. If you have sensitive data,
please encrypt it before writing it to DCS.

Data Restoration and Disaster Recovery
Build restoration and disaster recovery (DR) capabilities in advance to prevent
data from being deleted or damaged by mistake in abnormal data processing
scenarios.

1. Enable automated instance backup to quickly restore data in abnormal
scenarios.
DCS instances can be backed up automatically or manually. The automated
backup function is disabled by default. After it is enabled, you can restore
backup data to the instance. Backup data of an instance is stored for a
maximum of 7 days. For details about automated backup, see Configuring a
Backup Policy.
Manual backups are user-initiated full backups of instances. The backup data
is stored in Huawei Cloud OBS buckets and removed upon deletion of the
corresponding instance.

2. Use cross-AZ replication for data DR.
A master/standby or cluster DCS instance can be deployed within an AZ or
across multiple AZs for HA. For cross-AZ deployment, DCS initiates and
maintains data synchronization. High availability is achieved by having a
standby node take over in the event that a failure occurs on the master node.
When operations are read-heavy, you can use DCS Redis 4.0 or later instances
that support read/write splitting, or cluster instances that have multiple
replicas. DCS maintains data synchronization between the master and
replicas. You can connect to different addresses of an instance to isolate read
and write operations.

For cross-AZ deployment, DCS initiates and maintains data synchronization.
High availability is achieved by having a standby node take over in the event
that a failure occurs on the master node.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0312031.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0312031.html

Transmission Encryption with SSL
To prevent data from being stolen or damaged during transmission, use SSL
encryption to access DCS.

Currently, only DCS for Redis 6.0 basic edition supports SSL encryption. You are
advised to use DCS Redis 6.0 basic edition instances and enable SSL for them.

Checking for Abnormal Data Access
1. Enable Cloud Trace Service (CTS) to record all DCS access operations for

future audit.
CTS records operations on the cloud resources in your account. You can use
the logs generated by CTS to perform security analysis, track resource
changes, audit compliance, and locate faults.
After you enable CTS and configure a tracker, CTS can record management
and data traces of DCS for auditing. For details, see Viewing DCS Audit
Logs .

2. Use Cloud Eye for real-time monitoring and alarm reporting on security
events.
When using DCS, you may encounter error responses from the server. Huawei
Cloud provides the Cloud Eye service to automatically monitor your DCS
instances in real time, generate alarms, and send notifications, so that you
can learn about the requests, traffic, and error responses of your DCS
instances in real time.
Cloud Eye is enabled automatically after you create a DCS instance. For
details, see DCS Metrics and Configuring DCS Monitoring and Alarms.

Using the Latest SDKs for Better Experience and Security
Upgrade SDKs to the latest version to better protect your data and DCS usage.
Download the latest SDK in your desired language from SDK Overview.

Using Other Cloud Services for Additional Data Security
Ensuring DCS resource security using SecMaster

SecMaster provides you with built-in checks that are included in Cloud Security
Compliance Check 1.0, DJCP 2.0 Level 3 Requirements, and Network Security, to
check key configurations of DCS, generate alarms for configurations with security
risks, and provide hardening suggestions and guidelines. You can use the resource

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713012.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713012.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0713011.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-190905001.html
https://support.huaweicloud.com/intl/en-us/sdkreference-dcs/dcs-sdk-220321.html

management function of SecMaster to quickly learn about the DCS security status
and locate security risks. For details, see Baseline Inspection Overview.

4.2 Suggestions on Using DCS

Service Usage
Principle Description Remarks

Deploy services
nearby to reduce
latency.

If your service and DCS
instance are deployed far from
each other (not in the same
region) or with a high latency
(connected through public
networks), the read/write
performance will be greatly
affected by the latency.

If your service is latency-
sensitive, do not create
cross-AZ DCS Redis
instances.

Separate hot data
from cold data.

You can store frequently
accessed data (hot data) in
Redis, and infrequently
accessed data (cold data) in
databases such as MySQL and
Elasticsearch.

Infrequently accessed data
stored in the memory
occupies Redis space and
does not accelerate
access.

Differentiate
service data.

Store unrelated service data in
different Redis instances.

This prevents services
from affecting each other
and prevents single
instances from being too
large. This also enables
you to quickly restore
services in case of faults.

Do not use the SELECT
command for multi-DB on a
single instance.

Multi-DB on a single Redis
instance does not provide
good isolation and is no
longer in active
development by open-
source Redis. You are
advised not to depend on
this feature in the future.

Set a proper
eviction policy.

If the eviction policy is set
properly, Redis can still
function when the memory is
used up unexpectedly.

You can select a policy
that meets your service
requirements. The default
eviction policy used by
DCS is volatile-lru.

Use Redis as
cache.

Do not over-rely on Redis
transactions.

After a transaction is
executed, it cannot be
rolled back.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

https://support.huaweicloud.com/intl/en-us/usermanual-secmaster/secmaster_02_0028.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427031.html

Principle Description Remarks

If data is abnormal, clear the
cache for data restoration.

Redis does not have a
mechanism or protocol to
ensure strong data
consistency. Therefore,
services cannot over-rely
on the accuracy of Redis
data.

When using Redis as cache, set
expiration on all keys. Do not
use Redis as a database.

Set expiration as required,
but a longer expiration is
not necessarily better.

Prevent cache
breakdown.

Use Redis together with local
cache. Store frequently used
data in the local cache and
regularly update it
asynchronously.

-

Prevent cache
penetration.

Non-critical path operations
are passed through to the
database. Limit the rate of
access to the database.

-

If the requested data is not
found in Redis, read-only DB
instances are accessed. You can
use domain names to connect
to read-only DB instances.

The idea is that the
request does not go to the
main database.
You can use domain
names to connect to
multiple read-only DB
instances. If a fault occurs,
you can add such
instances for emergency
handling.

Do not use Redis
as a message
queue.

In pub/sub scenarios, do not
use Redis as a message queue.

● Unless otherwise
required, you are not
advised to use Redis as
a message queue.

● Using Redis as a
message queue causes
capacity, network,
performance, and
function issues.

● If message queues are
required, use Kafka for
throughput and
RocketMQ for
reliability.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Principle Description Remarks

Select proper
specifications.

If service growth causes
increases in Redis requests, use
Proxy Cluster or Redis Cluster
instances.

Scaling up single-node
and master/standby
instances only expands
the memory and
bandwidth, but cannot
enhance the computing
capabilities.

In production, do not use
single-node instances. Use
master/standby or cluster
instances.

-

Do not use large specifications
for master/standby instances.

Redis forks a process
when rewriting AOF or
running the BGSAVE
command. If the memory
is too large, responses will
be slow.

Prepare for
degradation or
disaster recovery.

When a cache miss occurs,
data is obtained from the
database. Alternatively, when a
fault occurs, allow another
Redis to take over services
automatically.

-

Data Design
Categor
y

Principle Description Remarks

Keys Keep the format
consistent.

Use the service name
or database name as
the prefix, followed by
colons (:). Ensure that
key names have clear
meanings.

For example: service
name:sub-service
name:ID.

Minimize the key
length.

Minimize the key
length without
compromising clarity of
the meaning.
Abbreviate common
words. For example,
user can be
abbreviated to u, and
messages can be
abbreviated to msg.

Use up to 128 bytes.
The shorter the better.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

Categor
y

Principle Description Remarks

Do not use
special
characters except
braces ({}).

Do not use special
characters such as
spaces, line brakes,
single or double
quotation marks, and
other escape
characters.

Redis uses braces ({})
to signify hash tags.
Braces in key names
must be used correctly
to avoid unbalanced
shards.

Values Use appropriate
value sizes.

Keep the value of a key
within 10 KB.

Large values may cause
unbalanced shards, hot
keys, traffic or CPU
usage surges, and
scaling or migration
failures. These
problems can be
avoided by proper
design.

Use appropriate
number of
elements in each
key.

Do not include too
many elements in each
Hash, Set, or List. It is
recommended that
each key contain up to
5000 elements.

Time complexity of
some commands, such
as HGETALL, is directly
related to the quantity
of elements in a key. If
commands whose time
complexity is O(N) or
higher are frequently
executed and a key has
a large number of
elements, there may be
slow requests,
unbalanced shards, or
hot keys.

Use appropriate
data types.

This saves memory and
bandwidth.

For example, to store
multiple attributes of a
user, you can use
multiple keys, such as
set u:1:name "X" and
set u:1:age 20. To save
memory usage, you can
also use the HMSET
command to set
multiple fields to their
respective values in the
hash stored at one key.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Categor
y

Principle Description Remarks

Set appropriate
timeout.

Do not set a large
number of keys to
expire at the same
time.

When setting key
expiration, add or
subtract a random
offset from a base
expiry time, to prevent
a large number of keys
from expiring at the
same time. Otherwise,
CPU usage will be high
at the expiry time.

Command Usage
Principle Description Remarks

Exercise caution
when using
commands with
time complexity
of O(N).

Pay attention to the value of N
for commands whose time
complexity is O(N). If the value
of N is too large, Redis will be
blocked and the CPU usage
will be high.

For example, the
HGETALL, LRANGE,
SMEMBERS, ZRANGE,
and SINTER commands
will consume a large
number of CPU resources
if there is a large number
of elements. Alternatively,
you can use SCAN sister
commands, such as
HSCAN, SSCAN, and
ZSCAN commands.

Do not use high-
risk commands.

Do not use high-risk
commands such as FLUSHALL,
KEYS, and HGETALL, or
rename them.

For details, see Renaming
Commands.

Exercise caution
when using the
SELECT
command.

Redis does not have a strong
support for multi-DB. Redis is
single-threaded, so databases
interfere with each other. You
are advised to use multiple
Redis instances instead of
using multi-DB on one
instance.

-

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-1009002.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-1009002.html

Principle Description Remarks

Use batch
operations to
improve
efficiency.

For batch operations, use the
MGET command, MSET
command, or pipelining to
improve efficiency, but do not
include a large number of
elements in one batch
operation.

MGET command, MSET
command, and pipelining
differ in the following
ways:
● MGET and MSET are

atomic operations,
while pipelining is not.

● Pipelining can be used
to send multiple
commands at a time,
while MGET and MSET
cannot.

● Pipelining must be
supported by both the
server and the client.

Do not use time-
consuming code
in Lua scripts.

The timeout of Lua scripts is
5s, so avoid using long scripts.

Long scripts: time-
consuming sleep
statements or long loops.

Do not use
random functions
in Lua scripts.

When invoking a Lua script, do
not use random functions to
specify keys. Otherwise, the
execution results will be
inconsistent between the
master and standby nodes,
causing data inconsistency.

-

Follow the rules
for using Lua on
cluster instances.

Follow the rules for using Lua
on cluster instances.

● When the EVAL or
EVALSHA command is
run, the command
parameter must
contain at least one
key. Otherwise, the
client displays the error
message "ERR eval/
evalsha numkeys must
be bigger than zero in
redis cluster mode."

● When the EVAL or
EVALSHA command is
run, a cluster DCS
Redis instance uses the
first key to compute
slots. Ensure that the
keys to be operated are
in the same slot.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

Principle Description Remarks

Optimize multi-
key operation
commands such
as MGET and
HMGET with
parallel
processing and
non-blocking I/O.

Some clients do not treat these
commands differently. Keys in
such a command are processed
sequentially before their values
are returned in a batch. This
process is slow and can be
optimized through pipelining.

For example, running the
MGET command on a
cluster using Lettuce is
dozens of times faster
than using Jedis, because
Lettuce uses pipelining
and non-blocking I/O
while Jedis does not have
a special plan itself. To use
Jedis in such scenarios,
you need to implement
slot grouping and
pipelining by yourself.

Do not use the
DEL command to
directly delete big
keys.

Deleting big keys, especially
Sets, using DEL blocks other
requests.

In Redis 4.0 and later, you
can use the UNLINK
command to delete big
keys safely. This command
is non-blocking.
In versions earlier than
Redis 4.0:
● To delete big Hashes,

use HSCAN + HDEL
commands.

● To delete big Lists, use
the LTRIM command.

● To delete big Sets, use
SSCAN + SREM
commands.

● To delete big Sorted
Sets, use ZSCAN +
ZREM commands.

SDK Usage
Principle Description Remarks

Use connection
pools and
persistent
connections
("pconnect" in
Redis
terminology).

The performance of short
connections ("connect" in
Redis terminology) is poor. Use
clients with connection pools.

Frequently connecting to
and disconnecting from
Redis will unnecessarily
consume a lot of system
resources and can cause
host breakdown in
extreme cases. Ensure that
the Redis client
connection pool is
correctly configured.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

Principle Description Remarks

The client must
perform fault
tolerance in case
of faults or slow
requests.

The client should have fault
tolerance and retry
mechanisms in case of master/
standby switchover, command
timeout, or slow requests
caused by network fluctuation
or configuration errors.

See Configuring Redis
Client Retry.

Set appropriate
interval and
number of retries.

Do not set the retry interval
too short or too long.

● If the retry interval is
very short, for example,
shorter than 200
milliseconds, a retry
storm may occur, and
can easily cause service
avalanche.

● If the retry interval is
very long or the
number of retries is set
to a large value, the
service recovery may
be slow in the case of
a master/standby
switchover.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Principle Description Remarks

Avoid using
Lettuce.

Lettuce is the default client of
Spring and stands out in terms
of performance. However, Jedis
is more stable because it is
better at detecting and
handling connection errors and
network fluctuations.
Therefore, Jedis is
recommended.

Lettuce has the following
problems:
● By default, Lettuce

does not have cluster
topology update
configurations. When
the cluster topology
changes (for example
after a master/standby
switchover or scaling),
new nodes cannot be
identified, causing
service failures. For
details, see How Do I
Handle an Error
When I Use Lettuce to
Connect to a Redis
Cluster Instance After
Specification
Modification?

● Lettuce cannot validate
connections in the
connection pool. If an
invalid connection is
used, services will fail
and may become
unavailable in minutes.

O&M and Management
Principle Description Remarks

Use passwords in
production.

In production systems, use
passwords to protect Redis.

-

Ensure security
on the live
network.

Do not allow unauthorized
developers to connect to redis-
server in the production
environment.

-

Verify the fault
handling
capability or
disaster recovery
logic of the
service.

Organize drills in the test
environment or pre-production
environment to verify service
reliability in Redis master/
standby switchover,
breakdown, or scaling
scenarios.

Master/standby
switchover can be
triggered manually on the
console. It is strongly
recommended that you
use Lettuce for these
drills.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0220613.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0220613.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0220613.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0220613.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0220613.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0220613.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0220613.html

Principle Description Remarks

Configure
monitoring.

Pay attention to the Redis
capacity and expand it before
overload.

Configure CPU, memory,
and bandwidth alarms
based on the alarm
thresholds.

Perform routine
health checks.

Perform routine checks on the
memory usage of each node
and whether the memory
usage of the master nodes is
balanced.

If memory usage is
unbalanced, big keys exist
and need to be split and
optimized.

Perform routine analysis on
hot keys and check whether
there are frequently accessed
keys.

-

Perform routine diagnosis on
Redis commands and check
whether O(N) commands have
potential risks.

Even if an O(N) command
is not time-consuming, it
is recommended that R&D
engineers analyze
whether the value of N
will increase with service
growth.

Perform routine analysis on
slow query logs.

Detect potential risks
based on slow query logs
and rectify faults as soon
as possible.

4.3 Detecting and Handling Big Keys and Hot Keys

Definitions of Big Keys and Hot Keys
NO TE

The definitions are for reference only. The actual service scenarios must be considered when
you define big keys and hot keys.

Term Definition

Big key There are two types of big keys:
● Keys that have a large value. If the size of a single String

key exceeds 10 KB, or if the size of all elements of a key
combined exceeds 50 MB, the key is defined as a big key.

● Keys that have a large number of elements. If the number
of elements in a key exceeds 5000, the key is defined as a
big key.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

Term Definition

Hot key A hot key is most frequently accessed, or consumes significant
resources. For example:
● In a cluster instance, a shard processes 10,000 requests per

second, among which 3000 are performed on the same key.
● In a cluster instance, a shard uses a total of 100 Mbits/s

inbound and outbound bandwidth, among which 80 Mbits/s
is used by the HGETALL operation on a Hash key.

Impact of Big Keys and Hot Keys
Category Impact

Big key Instance specifications fail to be modified.
Specification modification of a Redis Cluster instance involves
rebalancing (data migration between nodes). Redis has a limit
on key migration. If the instance has any single key bigger than
512 MB, the modification will fail when big key migration
between nodes times out. The bigger the key, the more likely
the migration will fail.

Data migration fails.
During data migration, if a key has many elements, other keys
will be blocked and will be stored in the memory buffer of the
migration ECS. If they are blocked for a long time, the
migration will fail.

Cluster shards are unbalanced.
● The memory usage of shards is unbalanced. For example, if

a shard uses a large memory or even uses up the memory,
keys on this shard are evicted, and resources of other shards
are wasted.

● The bandwidth usage of shards is unbalanced. For example,
flow control is repeatedly triggered on a shard.

Latency of client command execution increases.
Slow operations on a big key block other commands, resulting
in a large number of slow queries.

Flow control is triggered on the instance.
Frequently reading data from big keys exhausts the outbound
bandwidth of the instance, triggering flow control. As a result,
a large number of commands time out or slow queries occur,
affecting services.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Category Impact

Master/standby switchover is triggered.
If the high-risk DEL operation is performed on a big key, the
master node may be blocked for a long time, causing a
master/standby switchover.

Hot key Cluster shards are unbalanced.
If only the shard where the hot key is located is busy
processing service queries, there may be performance
bottlenecks on a single shard, and the compute resources of
other shards may be wasted.

CPU usage surges.
A large number of operations on hot keys may cause high CPU
usage. If the operations are on a single cluster shard, the CPU
usage of the shard where the hot key is located will surge. This
will slow down other requests and the overall performance. If
the service volume increases sharply, a master/standby
switchover may be triggered.

Cache breakdown may occur.
If Redis cannot handle the pressure on hot keys, requests will
hit the database. The database may break down as its load
increases dramatically, affecting other services.

Big keys and hot keys can be avoided through proper design. For details, see
Suggestions on Using DCS.

Detecting Big Keys and Hot Keys
Method Description

Through Big Key Analysis
and Hot Key Analysis on
the DCS console

See Analyzing Big Keys and Hot Keys.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-190808001.html

Method Description

By using the bigkeys and
hotkeys options on redis-
cli

● redis-cli uses the bigkeys option to traverse all
keys in a Redis instance and returns the overall
key statistics and the biggest key of six data
types: Strings, Lists, Hashes, Sets, Zsets, and
Streams. The command is redis-cli -h <Instance
connection address> -p <Port number> -a
<Password> --bigkeys.

● In Redis 4.0 and later, you can use the hotkeys
option to quickly find hot keys in redis-cli. Run
this command during service running to find hot
keys: redis-cli -h <Instance connection address>
-p <Port number> -a <Password> --hotkeys.
The hot key details can be obtained from the
summary part in the returned result.

Searching for big keys
using Redis commands

If there is a pattern of big keys, for example, the
prefix is cloud:msg:test, you can use a program to
scan for keys that match the prefix, and then run
commands to query the number of members in the
key and query the key sizes to find big keys.
● Commands for querying the number of

members: LLEN, HLEN, XLEN, ZCARD, SCARD
● Commands for querying the memory usage of

keys: DEBUG OBJECT, MEMORY USAGE
CAUTION

This method consumes a large number of computing
resources. To ensure service running, do not use this
method on instances with heavy service pressure.

Searching for big keys
using redis-rdb-tools

redis-rdb-tools is an open-source tool for
analyzing Redis RDB snapshot files. You can use it
to analyze the memory usage of all keys in a Redis
instance.
To use this method, you must export the RDB file
of an instance on the Backups & Restorations
page of the DCS console.
CAUTION

This method does not affect service running, but is not as
timely as online analysis.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

https://github.com/sripathikrishnan/redis-rdb-tools?spm=a2c4g.11186623.0.0.140745d6UhJnC6
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0312034.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-0312034.html

Optimizing Big Keys and Hot Keys
Category Method

Big key Split big keys.
Scenarios:
● If the big key is a String, you can split it into several key-

value pairs and use MGET or a pipeline consisting of
multiple GET operations to obtain the values. In this way,
the pressure of a single operation can be split. For a cluster
instance, the operation pressure can be evenly distributed to
multiple shards, reducing the impact on a single shard.

● If the big key contains multiple elements, and the
elements must be operated together, the big key cannot
be split. You can remove the big key from Redis and store it
on other storage media instead. This scenario should be
avoided by design.

● If the big key contains multiple elements, and only some
elements need to be operated each time, separate the
elements. Take a Hash key as an example. Each time you
run the HGET or HSET command, the result of the hash
value modulo N (customized on the client) determines
which key the field falls on. This algorithm is similar to that
used for calculating slots in Redis Cluster.

Store big keys on other storage media.
If a big key cannot be split, it is not suitable to be stored in
Redis. You can store it on other storage media, such as SFS or
other NoSQL databases, and delete the big key from Redis.
CAUTION

Do not use the DEL command to delete big keys. Otherwise, Redis may
be blocked or even a master/standby switchover may occur. The
UNLINK command can be used to delete big keys in Redis 4.0 and later.

Set appropriate expiration and delete expired data
regularly.
Appropriate expiration prevents expired data from remaining in
Redis. Due to Redis's lazy free, expired data may not be deleted
in time. If this occurs, scan expired keys.

Hot key Split read and write requests.
If a hot key is frequently read, configure read/write splitting
on the client to reduce the impact on the master node. You can
also add replicas to meet the read requirements, but there
cannot be too many replicas. In DCS, replicas replicate data
from the master in parallel. The replicas are independent of
each other and the replication delay is short. However, if there
is a large number of replicas, CPU usage and network load on
the master node will be high.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

https://www.huaweicloud.com/intl/en-us/product/sfs.html
https://support.huaweicloud.com/intl/en-us/usermanual-dcs/dcs-ug-210330002.html
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427027.html

Category Method

Use the client cache or local cache.
If you know what keys are frequently used, you can design a
two-level cache architecture (client/local cache and remote
Redis). Frequently used data is obtained from the local cache
first. The local cache and remote cache are updated with data
writes at the same time. In this way, the read pressure on
frequently accessed data can be separated. This method is
costly because it requires changes to the client architecture and
code.

Design a circuit breaker or degradation mechanism.
Hot keys can easily result in cache breakdown. During peak
hours, requests are passed through to the backend database,
causing service avalanche. To ensure availability, the system
must have a circuit breaker or degradation mechanism to limit
the traffic and degrade services if breakdown occurs.

4.4 Configuring a Redis Pipeline

Overview
DCS supports Redis pipelining. This technique sends multiple commands to the
Redis server at once, reducing network latency and improving performance.

Without a pipeline, a client sends a command to Redis, waits for the server to
return the result, then sends the next command, and so on. With a pipeline, a
client sends commands to Redis without waiting for the results. After all
commands are sent, the client closes the request, starts to receive responses, and
matches them to the commands in sequence.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

Figure 4-1 Comparing the network communication with and without a pipeline

Generally in pipelining, Redis clients send commands in batches, receive all results,
and then return them to upper-layer services. This mechanism reduces the
network round-trip time (RTT), system calls of read() and write(), and process
switchovers, and improves program efficiency and performance.

Use pipelining to perform Redis operations in batches for better performance, if
your services does not need to obtain the result of each operation immediately.

NO TE

● Pipelines exclusively use the client-server connection. Other operations cannot be
performed until the pipelines are closed. To perform other operations at the same time,
set up a connection dedicated to pipelines.

● For more information, see Redis pipelining.

Notes and Constraints
● Pipelining cannot ensure atomicity.

Pipelining sends client commands in batches. The server parses each
command and executes them one by one in sequence. During this process, the
server may execute commands from other clients. For atomicity, use
transactions or Lua scripts.

● Pipelining does not support rollback if an error occurs.
● Pipelining does not feature transactions. Do not use it if commands depend

on each other.
Some clients, such as redis-py, wrap pipelines in transactional commands
MULTI and EXEC. Note the differences between pipelines and transactions.
For restrictions on transactions, see Redis transactions.

● Due to buffer limits of the server and some clients, do not use many
commands in a single pipeline.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

https://redis.io/docs/latest/develop/use/pipelining/
https://redis.io/docs/latest/develop/interact/transactions/

● There are constraints in the cluster Redis architecture. For example, keys
cannot be accessed across slots in a single command; the "-MOVED" error
occurs when data that is not on the current node is accessed. Therefore,
ensure commands in pipelines are executable when you use pipelining in
cluster architecture. For more information, see Command Restrictions.

Comparing Performance
The following code compares the performance with and without a pipeline.

public static void main(String[] args) {
 // Set the Redis instance connection address and port.
 Jedis jedis = new Jedis("127.0.0.1", 6379);

 // Run commands consecutively.
 final int COUNT=5000;
 String key = "key";

 // 1 ---No pipelines are used.---
 jedis.del(key); // Initialize the key.
 long t1 = System.currentTimeMillis();
 for (int i = 0; i < COUNT; i++) {
 // Send a request and receive a response.
 jedis.incr(key);
 }
 long t2 = System.currentTimeMillis();
 System.out.println("No Pipeline > value:"+jedis.get(key)+" > Duration:" + (t2 - t1) + "ms");

 // 2 ----A pipeline is used.---
 jedis.del(key); // Initialize the key.
 Pipeline p1 = jedis.pipelined();
 long t3 = System.currentTimeMillis();
 for (int i = 0; i < COUNT; i++) {
 // Send a request.
 p1.incr(key);
 }
 // Receive a response.
 p1.sync();
 long t4 = System.currentTimeMillis();

 System.out.println("Pipeline used > value:"+jedis.get(key)+" > Duration:" + (t4 - t3)+ "ms");
 jedis.close();}

The result shows that the performance is better when a pipeline is used.

No pipeline > value:5000 > Duration:1204ms
Pipeline used > value:5000 > Duration:9ms

Processing the Response Data
The following code shows two methods of processing the response data when a
pipeline is used in Jedis.

public static void main(String[] args) {
 // Set the Redis instance connection address and port.
 Jedis jedis = new Jedis("127.0.0.1", 6379);
 String key = "key";
 jedis.del(key); // Initialize

 // -------- Method 1 --------
 Pipeline p1 = jedis.pipelined();
 System.out.println("-----Method 1-----");
 for (int i = 0; i < 5; i++) {
 p1.incr(key);
 System.out.println("Pipeline sends a request.");
 }

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

https://support.huaweicloud.com/intl/en-us/productdesc-dcs/dcs-pd-200813003.html

 // The request is sent. Start receiving the response.
 System.out.println("The request is sent. Start receiving the response.");
 List<Object> responses = p1.syncAndReturnAll();
 if (responses == null || responses.isEmpty()) {
 jedis.close();
 throw new RuntimeException("Pipeline error: no response.");
 }
 for (Object resp : responses) {
 System.out.println("Pipeline receives a response: " + resp.toString());
 }
 System.out.println();

 // -------- Method 2 --------
 System.out.println("-----Method 2-----");
 jedis.del(key); // Initialize
 Pipeline p2 = jedis.pipelined();

 // Declare a response.
 Response<Long> r1 = p2.incr(key);
 System.out.println("Pipeline sends a request.");
 Response<Long> r2 = p2.incr(key);
 System.out.println("Pipeline sends a request.");
 Response<Long> r3 = p2.incr(key);
 System.out.println("Pipeline sends a request.");
 Response<Long> r4 = p2.incr(key);
 System.out.println("Pipeline sends a request.");
 Response<Long> r5 = p2.incr(key);
 System.out.println("Pipeline sends a request.");
 try {
 r1.get(); // An exception is thrown because the response is still pending.
 } catch (Exception e) {
 System.out.println(" <<< Pipeline error: Receiving the response has not started yet. >>> ");
 }
 // The request is sent and responses start to be received.
 System.out.println("The request is sent. Start receiving the response.");
 p2.sync();
 System.out.println("Pipeline receives the response: " + r1.get());
 System.out.println("Pipeline receives the response: " + r2.get());
 System.out.println("Pipeline receives the response: " + r3.get());
 System.out.println("Pipeline receives the response: " + r4.get());
 System.out.println("Pipeline receives the response: " + r5.get());
 jedis.close();}

Result:

-----Method 1-----
Pipeline sends a request.
Pipeline sends a request.
Pipeline sends a request.
Pipeline sends a request.
Pipeline sends a request.
The request is sent. Start receiving the response.
Pipeline receives the response: 1
Pipeline receives the response: 2
Pipeline receives the response: 3
Pipeline receives the response: 4
Pipeline receives the response: 5
-----Method 2-----
Pipeline sends a request.
Pipeline sends a request.
Pipeline sends a request.
Pipeline sends a request.
Pipeline sends a request.
 <<< Pipeline error: Receiving the response has not started yet. >>>
The request is sent. Start receiving the response.
Pipeline receives the response: 1
Pipeline receives the response: 2
Pipeline receives the response: 3
Pipeline receives the response: 4
Pipeline receives the response: 5

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

4.5 Optimizing the Jedis Connection Pool

Overview
JedisPool is the connection pool of the Jedis client. This section describes how to
configure JedisPool for better Redis performance and resource utilization.

Using JedisPool
The following Maven dependency is for Jedis 5.1.3.

<dependency>
 <groupId>redis.clients</groupId>
 <artifactId>jedis</artifactId>
 <version>5.1.3</version>
</dependency>

Jedis manages resource pools using Apache Commons-pool2. The key parameter
GenericObjectPoolConfig (resource pool) is required to define JedisPool. This
parameter can be used as follows. For details, see JedisPool Parameters.

GenericObjectPoolConfig jedisPoolConfig = new GenericObjectPoolConfig();
jedisPoolConfig.setMaxTotal(...);
jedisPoolConfig.setMaxIdle(...);
jedisPoolConfig.setMinIdle(...);
jedisPoolConfig.setMaxWaitMillis(...);

JedisPool is initialized as follows:

// redisHost is the IP address of the Redis instance. redisPort is the port of the Redis instance. redisPassword
is the password of the Redis instance. timeout is the connection or read/write timeout.
JedisPool jedisPool = new JedisPool(jedisPoolConfig, redisHost, redisPort, timeout, redisPassword);

// Execution
Jedis jedis = null;
try {
 jedis = jedisPool.getResource();
 // Specific command
 jedis.set("key", "value");
} catch (Exception e) {
 logger.error(e.getMessage(), e);
} finally {
 // With JedisPool, Jedis connections will be returned to the resource pool.
 if (jedis != null)
 jedis.close();
}

JedisPool Parameters
JedisPool manages Jedis connections in a connection pool, which ensures resource
control and thread security. GenericObjectPoolConfig can improve Redis
performance at lower costs. Table 4-1 and Table 4-2 describe parameters and
their configuration suggestions.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

Table 4-1 Parameters related to resource configuration and utilization

Parameter Description Default
Value

Suggestion

maxTotal Maximum number of
connections in a resource
pool

8 Suggestions on
Key Parameters

maxIdle Maximum number of idle
connections allowed in a
resource pool

8 Suggestions on
Key Parameters

minIdle Minimum number of idle
connections allowed in a
resource pool

0 Suggestions on
Key Parameters

blockWhenExha
usted

Whether a caller awaits
when a resource pool is
used up
● true: yes
● false: no
maxWaitMillis is valid only
when this parameter is set
to true.

true Use the default
value.

maxWaitMillis Maximum time that a caller
waits after a resource pool
is used up, in milliseconds.
The value -1 indicates that
the caller keeps waiting.

-1 Specify a time.

testOnBorrow Whether to test validity of
connections borrowed from
a resource pool (ping).
Invalid connections will be
removed.
● true: yes
● false: no

false Set to false
during heavy
service hours,
saving resources a
ping.

testOnReturn Whether to test validity of
connections returned to a
resource pool (ping). Invalid
connections will be
removed.
● true: yes
● false: no

false Set to false
during heavy
service hours,
saving resources a
ping.

jmxEnabled Whether to enable JMX
monitoring.
● true: yes
● false: no

true Enable it, also for
the application.

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

Table 4-2 describes the parameters for testing idle Jedis objects.

Table 4-2 Idle resource testing parameters

Parameter Description Default
Value

Suggestion

testWhileIdle Whether to test validity of
idle connections using ping.
Invalid ones will be
destroyed.

false true

timeBetweenEvi
ctionRunsMillis

Interval of looking for idle
resources, in milliseconds.
-1: disabled

-1 Specify an
interval, use the
default value, or
use the
JedisPoolConfig.

minEvictableIdle
TimeMillis

Minimum idle duration in a
resource pool, in
milliseconds. Resources that
are idle longer than this will
be removed.

1,800,000
(30
minutes)

Specify it as
required.
Generally, use the
default value.
JedisPoolConfig
can be used.

numTestsPerEvic
tionRun

Number of idle resources to
be tested each time.

3 Adjust this
parameter as
required. The
value -1 indicates
that all idle
connections are
tested.

Jedis provides JedisPoolConfig which inherits certain idle connection testing
settings of GenericObjectPoolConfig.

public class JedisPoolConfig extends GenericObjectPoolConfig {
 public JedisPoolConfig() {
 setTestWhileIdle(true);
 setMinEvictableIdleTimeMillis(60000);
 setTimeBetweenEvictionRunsMillis(30000);
 setNumTestsPerEvictionRun(-1);
 }}

NO TE

All of the default values are available in
org.apache.commons.pool2.impl.BaseObjectPoolConfig.

Suggestions on Key Parameters
● maxTotal

Consider the following factors:

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

– The Redis concurrency required by services
– Execution duration on a client
– Redis resources, such as the number of shards
– maxTotal must be within the maximum number of Redis connections.

For details about the maximum Redis connections, see How Do I View
Current Concurrent Connections and Maximum Connections of a DCS
Redis Instance?.

– Resource overhead. For example, control idle connections while avoiding
frequently releasing and creating connections.

Assume that the average duration of executing a command is 1 ms. This
execution covers the resource borrowing and returning, and network
transmission. The QPS of a connection is about 1000 (1s/1 ms). The expected
QPS per instance is 50,000 (Total service QPS/Number of Redis shards).
Ideally, the required resource pool size (maxTotal) is 50 (50,000/1000).
In reality, more resources need to be reserved. Therefore, maxTotal can be
greater. However, a large maxTotal allows many connections, which consume
client and server resources. Furthermore, large commands with high QPS may
block Redis and a large resource pool does not work.

● maxIdle and minIdle
maxIdle is the maximum number of connections required by services.
maxTotal reserves resources. Do not use tiny maxIdle. Otherwise, new
connection overhead occurs. minIdle controls idle resource testing.
Setting maxIdle to the same as maxTotal achieves an optimal connection
pool and avoids performance impact caused by connection pool scaling. This
combination fits in peak service hours, but causes resource wastes when the
number of concurrent connections is small or maxIdle is excessively high.
The connection pool size of a node can be estimated based on the total QPS
and the client scale.

● Using monitoring for appropriate values
In actual environments, an optimal parameter can be obtained through
monitoring, such as JMX.

Common Errors
● Insufficient resources

The following two cases indicate that resources cannot be obtained from the
pool. This is not necessarily due to small resource pools (see Suggestions on
Key Parameters). The network, resource pool parameter settings, resource
pool monitoring (JMX), code (for example, jedis.close() is not executed), slow
queries, and DNS may also be the cause.

a. Timeout:
redis.clients.jedis.exceptions.JedisConnectionException: Could not get a resource from the pool
...Caused by: java.util.NoSuchElementException: Timeout waiting for idle object
at org.apache.commons.pool2.impl.GenericObjectPool.borrowObject

b. When a resource pool is used up, it does not wait for resource release if
blockWhenExhausted is set to false:
redis.clients.jedis.exceptions.JedisConnectionException: Could not get a resource from the pool
...Caused by: java.util.NoSuchElementException: Pool exhausted
at org.apache.commons.pool2.impl.GenericObjectPool.borrowObject

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427070.html#section1
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427070.html#section1
https://support.huaweicloud.com/intl/en-us/dcs_faq/dcs-faq-0427070.html#section1

● JedisPool preheating
A project may time out after start for some reasons (for example, small
timeout interval). When the maximum number of resources and minimum
number of idle resources are defined by JedisPool, Jedis connections are not
created in the connection pool. In initial use, if no resource in the pool is used,
a new Jedis connection is created and then added to the resource pool. This
process takes some time. Therefore, you are advised to preheat JedisPool
based on the minimum number of idle connections after defining JedisPool.
The following is an example:
List<Jedis> minIdleJedisList = new ArrayList<Jedis>(jedisPoolConfig.getMinIdle());
for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {
 Jedis jedis = null;
 try {
 jedis = pool.getResource();
 minIdleJedisList.add(jedis);
 jedis.ping();
 } catch (Exception e) {
 logger.error(e.getMessage(), e);
 } finally {
 }
}
for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {
 Jedis jedis = null;
 try {
 jedis = minIdleJedisList.get(i);
 jedis.close();
 } catch (Exception e) {
 logger.error(e.getMessage(), e);
 } finally {

 }
}

Distributed Cache Service
Best Practices 4 Usage Guide

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

	Contents
	1 DCS Best Practices
	2 Service Application
	2.1 Serializing Access to Frequently Accessed Resources
	2.2 Ranking with DCS
	2.3 Implementing Bullet-Screen and Social Comments with DCS
	2.4 Merging Game Servers with DCS
	2.5 Flashing E-commerce Sales with DCS
	2.6 Reconstructing Application System Databases with DCS
	2.7 Upgrading a Redis 3.0 Instance

	3 Network Connection
	3.1 Using Nginx for Public Access to DCS
	3.2 Using SSH Tunneling for Public Access to DCS
	3.3 Using ELB for Public Access to DCS
	3.4 Connecting a Client to DCS Through CCE
	3.5 Configuring Redis Client Retry

	4 Usage Guide
	4.1 DCS Data Security
	4.2 Suggestions on Using DCS
	4.3 Detecting and Handling Big Keys and Hot Keys
	4.4 Configuring a Redis Pipeline
	4.5 Optimizing the Jedis Connection Pool

